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The reliability of rock-type prediction using down-hole density, gamma ray response, and magnetic susceptibility
measurements was evaluated at the Victoria property, Sudbury, ON. A supervised neural network, trained using
lithological information from drill hole FNX1168, yields a predictive accuracy of 83% for the training data. Apply-
ing the trained network on drill hole FNX1182 resulted in 64% of the rock types being correctly classified when
compared with the classification produced by geologists during logging of the core. The homogenous rock
types, like quartz diorite, had a high accuracy of classification; while the heterogeneous rock types such as dia-
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Victoria base were poorly classified. Overlap between physical properties of rock types caused by heterogeneity or inher-
Down-hole ent similarity in physical properties of rock types, which were verified by observing the cores, accounts for most

of the misclassification. To reduce the misclassification, the network was trained from physical log units in
FNX1168 derived from clustering of physical properties measurements. Four physical log units mainly represent-
ed four groups of rocks: i) quartz diorite; ii) metabasalt and metagabbro; iii) metasediment and quartzite; and iv)
sulfide and diabase. The predictive accuracy in the training process rose to 95%. The trained network then was
applied to predicting the physical log units in FNX1182. Given the relationships between physical log units and
rock types from FNX1168, the results of physical-log-unit classification in FNX1182 were interpreted from a geo-
logical point of view. Although in ideal cases we would like to be able to extract the same classification that a ge-
ologist provides, the extraction of physical log units is a more realistic goal. The interpretation of the lithological
units from the physical log units can be compared with the geologist's classification and discrepancies or anom-
alies analyzed in greater detail.
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1. Introduction

Typically when a hole is drilled, a geologist will look at the core ex-
tracted and classify the lithology or rock type as a function of depth
down the hole. Rock type prediction based on log data from down-
hole geophysical measurements can be considered as a potential alter-
native to a geologist's log when the cores are not fully recovered such
as ocean drilling or drilling methods which do not provide cores such
as percussion drilling in mineral exploration (Benaouda et al., 1999
and Qi and Carr, 2006). Physical properties logging provides a continu-
ous set of data down the hole, which can be effectively used to improve
the understanding of the geological characteristics of the hole (Killeen,
1997; McDowell et al., 1988; Granek, 2011). The accuracy of rock-type
characterization based on physical properties is proportional to the ex-
istent contrast of these data between rock types (Perron et al., 2011 and
Mwenifumbo and Mwenifumbo, 2012). But, similarity of physical prop-
erties of rocks and the heterogeneity of the rock increases the overlap
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between physical properties of different rocks (Rabaute et al., 2003;
Garcia et al., 2011). Overlap of physical properties between two rocks
brings confusion to the prediction of rock types. We feel that it is
more realistic to classify them as physical units. The term “physical log
units” can be described as homogenous intervals of one or more rock
types with consistent physical properties. The link between physical
units and rock types can help geophysical studies to gain a better under-
standing of the geological setting (Benaouda et al., 1999 and Perron
etal, 2011).

Conventional statistical techniques such as using histograms, box
and whisker plots, cross plots, or the analysis of average and variance,
were employed by Reed et al. (1997); Killeen (1997); McDowell et al.
(1988, 2004), and Vella and Emerson (2009) to extract the pattern of
variation in physical properties measurements and relate them to a geo-
logical setting. Recently, the multi-variable pattern recognition tech-
niques have become popular, since the conventional methods were
limited in terms of the number of variables, and their ability to establish
a quantitative relationship between physical properties and a geological
setting (Rabaute et al., 2003; Qi and Carr, 2006; Williams and Dipple,
2007; Garcia et al., 2011 and Granek, 2011). Supervised classification
techniques can be used when the goal is to predict rock types based


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jappgeo.2015.11.006&domain=pdf
http://dx.doi.org/10.1016/j.jappgeo.2015.11.006
mailto:dtinkham@laurentian.ca
Journal logo
http://dx.doi.org/10.1016/j.jappgeo.2015.11.006
http://www.sciencedirect.com/science/journal/09269851
www.elsevier.com/locate/jappgeo

18 0. Mahmoodi et al. / Journal of Applied Geophysics 124 (2016) 17-26

on the physical properties measurements. As the term ‘supervised’ im-
plies, a drill hole or parts of a hole with both physical properties mea-
surement and rock type information are used to train the classifier,
and then the trained classifier can be applied to a new hole or those
parts lacking the core to predict the rock types (Benaouda et al., 1999
and Qi and Carr, 2006).

Varying composition of rock types, structures, alteration and miner-
alization cause non-linear variation in physical properties, which jus-
tifies using a non-linear classifier to analyze these data. The neural
network is a robust non-linear classifier successfully applied to down-
hole logging data (Ojha and Maiti, 2013). Baldwin et al. (1990); Wong
et al. (1995); Farmer and Adams (1998); Qi and Carr (2006) and Maiti
et al. (2007) used the neural network to predict lithofacies based on
down-hole physical properties measurements. In these works a quanti-
tative relationship between numerical well log data and core descrip-
tion is simulated by the neural network, then the network is applied
to the uncored wells or parts of the well lacking the core to predict
lithofacies. The application of a neural network was introduced to the
Ocean Drilling Program by Benaouda et al. (1999) and Ojha and Maiti
(2013). They used the neural network to classify down-hole physical
properties measurement to predict lithology where there is partial or
zero core recovery along the hole. All of the above mentioned works
have been applied in the sedimentary environment, and the prediction
was considered fairly successful. Application of this method to the igne-
ous and metamorphic environments like the Victoria property might be
complicated as they are more complex than sedimentary environments
due to the structural metamorphic and intrusive history.

In this research, the main objective is to compare the reliability of
representing the physical properties measurements in the form of
rock types and physical log units. As a first step, a neural network
trained from physical properties and geological logging information col-
lected in hole FNX1168 was used to predict the rock type in hole
FNX1182. If the network was trained on the data from more than one
hole, better results might be obtained, but our purpose is to test the ef-
ficacy of neural networks early in the exploration process when less
data are available. The predicted rock types in FNX1182 are compared
with actual rock types logged by geologists to evaluate the accuracy of
the classification in the context of an igneous and metamorphic envi-
ronment. With the physical properties measurements available to us,
we demonstrate below that this is only moderately successful. Then
rather than using the geologists' classification of rock units for training,
we used physical log units in FNX1168 determined by fuzzy k-means
clustering (Mahmoodi and Smith, 2015). The trained neural network
was then used to predict physical units in FNX1182, with greater suc-
cess. Considering the relationship between physical units and rock
types is known for FNX1168, the predicted physical units of FNX1182
can be interpreted from a geological point of view. Finally, we discuss
whether to represent down-hole physical properties measurements;
in the form of rock type or physical log units.

2. Methods

The neural network is structurally comprised of an input layer, at
least one hidden layer, and an output layer. Each layer has different
numbers of neurons. Neurons of two adjacent layers are connected
one-by-one by synaptic weights. The schematic structure of a simple
three-layer neural network is shown in Fig. 1. The input data are repre-
sented as a data vector to the input layer. The number of neurons in the
input layer equals the number of variables measured at each depth (in
our case three, gamma-ray response, density and magnetic susceptibil-
ity). The number of output neurons is determined by the number of el-
ements of the target vector; which is the number of classes in the
classification problems (in our case seven rock types). The hidden neu-
rons are computing elements of the network, which use transfer func-
tions to generate the output. The input of a hidden neuron is a
summation of bias and neurons in the previous layer multiplied by

corresponding synaptic weights. Biases allow the activation function
to shift to the right or left to give a desired output (Bishop, 1995;
Duda, 2001; Theodoridis and Koutroumbas, 2003 and Beale et al.,
2001). In multilayer networks, the sigmoid function shown in Fig. 1 is
often used as the transfer function (Beale et al., 2001). There is no rigor-
ous theoretical method available to choose the number of hidden layers
and hidden neurons, and they are often determined subjectively based
on trial and error. The most compact structure with acceptable perfor-
mance is preferred for computational efficiency. Most classification
problems can be solved by the network when one hidden layer is
used. With increase in the complexity of the relationship between
input and desired output on the training data, the number of the hidden
neurons should increase (Lawrence et al., 1996; Wong et al.,, 1995 and
Beale et al,, 2001).

The initial weights are randomly assigned to start the training pro-
cess. The main task in network training is to adjust the weights to min-
imize the error of the network. The error function for each iteration is a
form of the difference between the actual network output and the de-
sired or target output. Here, mean square error (mse) is described as
the error function:
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where t and a represent desired and network output respectively for
each neuron of the output layer for N training data. In our case N is the
number of depths that physical properties are measured at. A gradient
descent is an optimization method which is used to adjust the weights
in the direction through which the most rapid decrease in error function
is achieved. The adjusting term (Acwy}), which is added to the ™ weight of
the " layer weight after iteration, is obtained by the derivative (gradi-
ent) of the error function with respect to the weight. To enhance optimi-
zation efficiency, this value is multiplied by a learning rate (Ir). The
learning rate which is greater than zero and smaller than or equal to 1
controls the speed of the convergence process and how much the
weights and biases can be modified at each iteration. The new estimate
of the weight @' (new) is described as:
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where ] o1y is the current weight, Awj is the adjusting term, and Ir
is learning rate. The network with adjusted weights generates a new
output set, and the process iterates (each iteration referred to as one
epoch) until the termination criteria is fulfilled. Different criteria have
been suggested to terminate the iterations, such as a threshold for the
minimum performance function (cost function), the minimum decrease
in the cost function in successive iterations, and the number of valida-
tion checks, which is the number of successive iterations that the cost
function fails to decrease (Bishop, 1995; Benaouda et al., 1999;
Theodoridis and Koutroumbas, 2003 and Beale et al., 2001).

The training data set must be sufficiently large to provide enough
data to train and test the network. The data set is typically randomly di-
vided into three parts for training, validation, and testing, constituting
70, 15, and 15% of the available data, respectively. Testing data are
used to assess generalization of the trained network which determines
capability of the network to be efficiently applied to new data. If the net-
work keeps iterating and adjusting the parameters to minimize the
error, the network starts to over-fit the training data. Over-fitting occurs
when the network, irrespective of generalization, tries to minimize the
error of training data. In this case, the impact of random noise is incor-
porated into the network weights; however, the error in testing and val-
idation rises. Validation data is used to assure that the division of data is
appropriate. If the errors of testing and validation data are significantly
different, it indicates poor data division (Bishop, 1995; Benaouda et al.,
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