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In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be
obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of
such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block;
alternatively it has been defined as the structural index of the investigated source distribution. In both cases,
when k-order derivatives of the potentialfield are considered, the depth-weighting exponent has to be increased
by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We
show instead that invariant and realistic source-distribution models are obtained using the same depth-
weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the
gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model
and equal to that of the correspondingmagneticfield, in themagnetic case, and of the 1st derivative of the gravity
field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general con-
straints, themathematical demonstration of such invariance is difficult, because of its non-linearity, and of its var-
iable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to
confirm the invariance of the depth-weighting exponent.
A final consideration regards the role of the regularization parameter; we show that the regularization can
severely affect the depth to the source because the estimated depth tends to increase proportionally with the
size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regular-
ization parameter and depth weighting.

© 2014 Published by Elsevier B.V.

1. Introduction

Most geophysical inversion problems are characterized by a number
of data considerably lower than the number of the unknown parame-
ters. This corresponds to a highly underdetermined system. To get a
unique solution, a priori information must be therefore introduced.
The simplest case is that of imposing that the norm of the solution be
the smallest (minimum-length solution). In the case of potential field
inversion, this leads to a distribution of the unknown density or suscep-
tibility, which is very shallow and not representative of the true source
distribution. In fact, requiring the solution to be small corresponds to
finding a solution corresponding to the shallowest source distribution
compatible with the measured data. This behavior was also recently
explained by Silva et al. (2013) in terms of harmonic and biharmonic
bias, forcing the solution to have maxima and minima on the borders
of the modelized source region.

More realistic models of the distribution of the physical property at
depth can however be obtained by introducing a “depth weighting” in

the problem, able to counteract the natural decay of the kernel. Li and
Oldenburg (1996) proposed to use a depth weighting function such as:

w zð Þ ¼ 1
zþ qð Þβ=2 ð1Þ

where z is the depth of the layers and q depends on the height of survey.
They suggested to use β = 2 in the gravity case and β= 3 in the mag-
netic case, corresponding to the fall-off rates of the field produced by a
small cubic cell in the gravity and magnetic cases, respectively. Thus,
Li and Oldenburg (1996) and Li and Oldenburg (1998) chose to ‘tune’
their depth-weighting function according to the power-law decay of
the field produced by one single cell in the source domain. The
Zhdanov (2002) andČuma et al. (2012) inversion scheme uses integrat-
ed sensitivity weights changing according to the differentiation order.
Cella and Fedi (2012) showed instead that the most appropriate value
of β is equal to N, the structural index of the source. The structural
index may be, in turn, estimated with standard methods such as Euler
Deconvolution or the DEXP method (Fedi, 2007) and then introduced
into the objective function.
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In this paper we will show the existence of invariance rules occur-
ring in the inversion of potential fields of different orders, which may
be useful in order to compare the source model distributions derived
from the regularized inversion of gravity (or magnetic) fields with
those from their derivatives.

2. The weighted minimum-length solution for the magnetic field
and its k-order derivatives

Inverse potential-field problems are described by Fredholm integral
equations of the first kind, which are, by nature, ill posed problems. For
instance, the inverse geomagnetic problem has the following formula-
tion (Blakely, 1996; Grant and West, 1965):

ΔT rð Þ ¼
Z

Ω
A r; r0ð ÞM r0ð Þd3r0 ð2Þ

where: ΔT(r) is the measured anomalous magnetic field at the mea-
surement point r(x,y,z);M(r0) is the unknown distribution of magneti-
zation at r0(x0,y0,z0); the integral is a volume integral over the volume
Ω; and the kernel A(r, r0) is the field at r from a magnetic dipole of
unit strength located at position r0. If we assume that themagnetization
direction of the source is parallel to the direction of the main field and
that both directions are vertical, A(r, r0) takes the following simple
form:

A r; r0ð Þ ¼ 3 z−z0ð Þ2
r−r0k k52

− 1
r−r0k k32

: ð3Þ

Similar equations will occur for the gravity case and for any order
derivative of either the gravity or themagnetic field. Here and through-
out the paper, ‖ ⋅ ‖2 denotes the vector two-norm.

Throughout this study the volume containing the source is assumed
to be a rectangular volume of dimensions dx × dy × dz. We also assume
that the points at which the total-field anomaly is measured lie within a
plane of dimensions ex × ey located at height h above volume Ω.

To solve the integral Eq. (2) numerically, we divideΩ into N rectan-
gular cells arranged in anNx×Ny×Nz grid that coversΩ, andwe assume
a constantmagnetizationMjwithin each cellΩj. This leads to a P×N sys-
tem of linear equations of the form:

d ¼ Am ð4Þ

where d is the column vector of the observation data (magnetic or
gravity field), m is the column vector of the unknown (susceptibility/
magnetization or density) and A is the kernel rectangular matrix.

In this paperwewill consider not only the classical inversion of grav-
ity and magnetic field data, but also that of their derivatives f of some
order k. In this case, our system will be written as:

f ¼ A fm f : ð5Þ

If the number of unknowns ismuch greater than the number of data,
the simplest solution of system (4) is the so-calledminimum-length so-
lution, which is the solution of problem (4) corresponding to minimiz-
ing the objective function

φm ¼ mk k22 ð6Þ

subject to the constraint d − Am = 0.
This solution (e.g., Menke, 1984) has the form:

m¼AT AAT
� �−1

d: ð7Þ

If some information for themodel is available, regarding for instance
the source distribution at depth, the model objective function ϕm may

incorporate this information, by using a specific weighting matrix Wm

such as (e.g., Li and Oldenburg, 2003):

Wm ¼ diag
1

zi þ qð Þβ
� �

i ¼ 1;…; L ð8Þ

where β is an exponent to be fixed and q is a quantity dependent on
the altitude of the measurements. So, problem (6) becomes that of
minimizing:

φm ¼ Wmmk k22 ð9Þ

subject to the constraint d − Am = 0.
The solution is called weighted minimum-length solution (Menke,

1984):

m ¼ W
−1

mAT AW
−1

mAT
� �−1

d: ð10Þ

A similar expression is obtained for the weighted minimum-length
solution of Eq. (5):

m f ¼ W
−1

mA f
T A fW

−1

mA f
T

� �−1
f: ð11Þ

The depth-weighting exponent is normally assigned as the decay-
exponent of the gravity or magnetic field, due to a single block (Li and
Oldenburg, 1996, 1998). The same concept was applied to the gravity
field derivatives (Li, 2001). Accordingly, we can generalize the approach
for any-order derivatives of potential fields: calling β the depth
weighting exponent of the magnetic field, and βk that of its k-order de-
rivatives, we will have:

βk ¼ β þ k: ð12Þ

Eq. (12) applies also to the gravity case, where β is the depth-
weighting exponent of the gravity gradient components and βk that of
their k-order derivatives. Following Cella and Fedi (2012) an optimal
choice for β is instead the structural index N of the investigated
source-distribution. However, since N also increases by k with the
order of differentiation of the field (e.g., Blakely, 1996), Eq. (12) holds
again.

The aim of this paper is to show:

a) that Eq. (12) may lead to not adequate source models; and
b) that consistent models are instead obtained if we assume that the

depth weighting exponent β relative to the magnetic field and to
any of its derivatives of order k is the same:

βk ¼ β: ð13Þ

In order to demonstrate b) let us first consider that Af= DA, where
D is any invertible linear operator matrix, such as the operator of direc-
tional differentiation. In principle, the differentiation operator sends all
the constant functions to zero, so as to be not invertible. However, its in-
verse operator, the integration operator, is uniquely defined if we set
the constant functions as to some arbitrary value and it is not singular.
In potential field analysis these constant functions, often called field
zero-level, are normally affected also by filtering and normal field sub-
traction. Nevertheless, the zero-level may be assessed under additional
conditions on the whole field behavior or on the related source proper-
ties, in practice in themodel appraisal step. Due to this,we can therefore
consider the differentiation operator as an invertible one.
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