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Predicting missing log data is a useful capability for geophysicists. Geophysical measurements in boreholes are
frequently affected by gaps in the recording of one or more logs. In particular, sonic and shear sonic logs are
often recorded over limited intervals along the well path, but the information these logs contain is crucial for
many geophysical applications. Estimating missing log intervals from a set of recorded logs is therefore of
great interest. In this work, I propose to estimate the data in missing parts of velocity logs using a genetic
algorithm (GA) optimisation and I demonstrate that this method is capable of extracting linear or exponential
relations that link the velocity to other available logs. The technique was tested on different sets of logs
(gamma ray, resistivity, density, neutron, sonic and shear sonic) from three wells drilled in different geological
settings and through different lithologies (sedimentary and intrusive rocks). The effectiveness of this methodol-
ogy is demonstrated by a series of blind tests and by evaluating the correlation coefficients between the true ver-
sus predicted velocity values. The combination of GA optimisation with a Gibbs sampler (GS) and subsequent
Monte Carlo simulations allows the uncertainties in the final predicted velocities to be reliably quantified. The
GA method is also compared with the neural networks (NN) approach and classical multilinear regression. The
comparisons show that the GA, NN andmultilinearmethods provide velocity estimateswith the same predictive
capability when the relation between the input logs and the seismic velocity is approximately linear. The GA and
NN approaches are more robust when the relations are non-linear. However, in all cases, themain advantages of
the GA optimisation procedure over the NN approach is that it directly provides an interpretable and simple
equation that relates the input and predicted logs. Moreover, the GAmethod is not affected by the disadvantages
that characterise gradient descent techniques such as the NN method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The determination of a reliable velocity–depth trend in a particular
well location is crucial in exploration geophysics. For example, reliable
compressional velocity estimates are needed to tie well data to seismic
data (Herron, 2014) or to derive a low-frequency trend for estimating
the absolute acoustic impedance from inverted post-stack data
(Morozov and Ma, 2009). Velocity logs are needed for efficient ampli-
tude versus angle (AVA) modelling (Mazzotti, 1990; Aleardi and
Mazzotti, 2014a) and to calibrate PP and PS wave reflections (Stewart
et al., 2002; Gaiser and Van Dok, 2005; Zhang andWang, 2009). Finally,
P- and S-wave velocities are crucial for building rock-physics templates
for facies and lithology classification (Avseth et al., 2005; Dvorkin et al.,
2014). However, sonic and shear sonic logs are often recorded over
limited depth intervals along the well path due to the limited budget
for acquiring such logs. Therefore, it is important to reliably estimate
P-wave and S-wave velocities in missing log intervals. This task can be

accomplished by determining a specific relation that links the velocity
logs with other recorded logs (e.g., gamma ray, resistivity, density
logs). Once these relations are known, they can be used to predict
seismic velocities for the depth intervals in which data are missing or,
assuming negligible lateral variations in petrophysical properties, to
predict seismic velocities in nearby wells. However, the non-linearities
in the relations that link seismic velocities to the other log data often
make explicit evaluations difficult. To address this issue, linear relations
between the seismic velocities and the other rock properties are usually
assumed (Pickett, 1963; Han et al., 1986; Castagna et al., 1993; Mazzotti
and Zamboni, 2003) and linear regressionmethods have been also used
for estimating missing well log data (Jain and deFigueiredo, 1982).
However, the linearity assumption is frequently violated in real cases
being the relationships between different log data or petrophysical
rock properties, in most of the cases, nonlinear. For example, it is well
known that non-linear relations link the P-wave velocity to water
saturation and the P-wave velocity to clay content (Eberhart-Philipps
et al., 1989; Avseth et al., 2005).

The recent development of computer-based intelligence methods
has enabled researchers to accurately address the non-linearity that
characterise these optimisation problems. In particular, the artificial
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neural network (NN) method has received the most attention in
exploration geophysics. In general, NN technology helps to identify
nontrivial correlations between geophysical data. This method has
been widely applied in many geophysical problems, such as wavelet
estimations (Wang and Mendel, 1992), velocity analysis (Calderón-
Mac ı´ as et al., 1998), automatic horizon picking (Huang, 1997), seismic
facies classification (Coléou et al., 2003; Herrera et al., 2006; Marroquín
et al., 2008) and to relate seismic-derived attributes to reservoir proper-
ties (e.g., to relate seismic attributes to porosity logs as in Dorrington
and Link, 2004). The NN method has also been widely applied for
predicting missing log intervals, namely, to identify a specific relation
that links a set of input logs with other logs (Arandia et al., 2001;
Poulton, 2002; Srisutthiyakorn, 2012). However, notwithstanding its
many successful applications in exploration geophysics, the classic NN
approach suffers from many limitations and drawbacks. In particular,
as discussed in Saggaf et al. (2003) and Van der Baan and Jutten
(2000), the NN method is primarily limited by its gradient-based
nature.

In this study, I attempt to overcome the drawbacks and limita-
tions of the NN method by applying a different method, the genetic
algorithm (GA), to determine the linking relation between a set of
input logs and a desired log. In particular, I focus on predicting P-
and S-wave velocities from a set of input logs. Similar to the classical
NN approach, the proposed methodology is based on the fact that
seismic velocities are related to the rock's petrophysical properties,
such as texture, mineralogy, saturation and pore fluid content.
However, other well logs are also dependent on these petrophysical
properties, and thus, the GA can identify quantitative relations
between the recorded logs without requiring any a priori information.
Therefore, linear and/or exponential relations are assumed to relate
the seismic velocities to a set of input logs, and the coefficients
that characterise these relations are determined by performing a GA
optimisation.

The aim of any inversion or optimisation process should not only be
to find an optimal solution but also to quantify the uncertainties that af-
fect the final result (Sen and Stoffa, 2013). Geophysical inverse prob-
lems suffer from non-uniqueness; that is, many solutions fit the
observed data equally well (Tarantola, 2005). To address this problem,
geophysical inverse problems are often cast in a statistical framework
(Duijndam, 1988) in which the solution to an inverse problem is not
only a single set of predicted model parameters but is also represented
by a posterior probability density function in themodel space. However,
similar to other global search algorithms, the GA is not a Markov Chain
Monte Carlo (MCMC) method and does not honour the principle of
importance sampling (Rubinstein and Kroese, 2011). Therefore, a
biased posterior probability distribution is estimated if it is computed
directly from the set of GA sampled models and their associated likeli-
hoods (Sen and Stoffa, 1996). In particular, the GA method has been
shown to underestimate the variance and thus the uncertainty that is
associated with each inverted parameter (Sen and Stoffa, 1996;
Aleardi and Mazzotti, 2014b). As discussed in Sen and Stoffa (1996),
MCMC methods can only be applied in cases with a limited number of
unknowns (no more than four or five) due to their high computational
cost. Therefore, several methods have been developed to obtain a
reliable and unbiased estimate of the posterior distributions after a GA
inversion (e.g., Sen and Stoffa, 1996; Mallick, 1999; Hong and Sen,
2009). In the present study, I follow the strategy proposed by
Sambridge (1999) in which a stochastic global search algorithm is
combined with a subsequent resampling of the explored portion of
the model space according to an MCMC method such as the Gibbs
sampler (Geman and Geman, 1984). Therefore, this approach attempts
to combine the speed of GA in finding an optimal solution with the
accuracy of a subsequentGS to obtain a reliable estimate of the posterior
probability distribution. Once the uncertainties in the coefficients in the
estimated relation have been derived, the uncertainties are then propa-
gated into the predicted seismic velocities via a Monte Carlo simulation

(see Avseth et al., 2005 for many examples of Monte Carlo simulations
in exploration geophysics).

A brief theoretical overview of genetic algorithms introduces the
proposed methodology. In the section that follows, neural networks
and multilinear methods are succinctly described as their results
will be compared to those of the proposed GA methodology. Three
real log data examples, discussed in detail, constitute the main
body of the paper. The final section contains the comparison of the
GA results with the NN and the classical multilinear regression
results.

2. A brief introduction to genetic algorithms

Genetic algorithms are global stochastic methods that were
developed by Holland (1975) and belong to a larger class of evolution-
ary algorithms. GAs are based on the mechanics of natural selection
and evolution (the “survival of the fittest” Darwinian principle) to
search a model space for optimal solutions. The optimisation process
is driven by three main genetic operators: mutation, cross-over and
selection. In a genetic algorithm, a population of strings (called
chromosomes), which encode candidate solutions (called individ-
uals or phenotypes) to an optimisation problem, evolves towards
better solutions during the evolution process, which starts from a
population of randomly generated individuals. In each generation,
the fitness (the goodness of each possible solution) of each individu-
al is evaluated, and multiple individuals are then stochastically
selected from the current population based on their fitness. These
individuals are then modified (using crossover and mutation
operators) to form a new population, which is used in the next iter-
ation. The algorithm terminates when either a maximum number of
generations have been produced or a satisfactory fitness level has
been reached in the current population. In the subsequent tests,
the number of individuals in the initial population is set to ten
times the number of unknowns, and the maximum number of
iterations is 50. In each iteration 90% of the parents are selected for
reproduction and mutation. The mutation rate (the probability of
mutating a variable) is fixed at 10%, whereas the stochastic universal
sampling selection method and a linear ranking are used for the
selection. A fitness-based elitist reinsertion method is applied to
replace the parents with the generated offspring. More information
and details about GA can be found in Goldberg (1989) and Mitchell
(1996).

3. The proposed methodology

Shear and compressional wave velocities depend on rock properties,
such as effective pressure, water saturation, mineralogical composition,
porosity, and other parameters. Well logs inherently contain informa-
tion describing the reservoir properties (e.g., gamma ray and resistivity
logs provide lithological and pore fluid type information, respectively).
Thus, these logs can be used to estimate the P- or S-wave velocities.
Moreover, if we assume that the S- or P-wave velocities are related to
each log by a linear or exponential relation, we can write:

Velocity ¼
Xk
n¼1

anLogn
bn ð1Þ

where the Log variable represents the nth log used in the prediction pro-
cedure. The weight of each input variable is given by the coefficient a,
whereas the exponent b is used to reproduce the effects of variations
in the input log on the seismic velocity. Eq. (1) can be seen as a general-
ization of classical depth-trends (for example the well-known Gardner
equation; Gardner et al., 1974) and similar equations have also been
used by other authors such as Banchs et al. (2001).
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