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Oil and gas exploration and production relies usually on the interpretation of a single seismic image, which is ob-
tained from observed data. However, the statistical nature of seismic data and the various approximations and
assumptions are sources of uncertainties which may corrupt the evaluation of parameters. The quantification
of these uncertainties is a major issue which supposes to help in decisions that have important social and
commercial implications. The residual moveout analysis, which is an important step in seismic data processing
is usually performed by a deterministic approach. In this paperwediscuss a Bayesian approach to the uncertainty
analysis.

© 2015 Elsevier B.V. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2. Common image gather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3. Conventional residual moveout analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4. Bayesian approach to RMO analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1. Statistical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2. Adjustment of the statistical model to data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3. Estimation of the variance of the noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4. The posterior distribution of Γ for given data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5. Metropolis–Hastings algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1. Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2. Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6. Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Appendix A. Proof of variance estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1. Introduction

Analysis of the subsurface geology in order to identify and optimize
the production of oil and gas deposits relies on the interpretation of

seismic images. The seismic images in the depth domain are the result
of an imaging tool which is called depthmigration.Migration is a proce-
dure in which seismic events are moved to their correct locations in
space. This requires an accurate knowledge of seismic velocity model.
Usually the so-called Common-Image-Gathers (CIGs) serve as a tool to
verify the correctness of the velocity model. Often the CIGs are comput-
ed in the surface offset (i.e. distance between shot point and receiver)
domain. Their flatness serves as a criterion of the velocity model

Journal of Applied Geophysics 117 (2015) 52–59

⁎ Corresponding author at: LMAP-OPERA, UFR Sciences et Techniques Avenue de
l'Université B.P. 1155, 64013 Pau Cedex, France.

E-mail address: tamatorojohng@gmail.com (T. Johng-Ay).

http://dx.doi.org/10.1016/j.jappgeo.2015.02.023
0926-9851/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Journal of Applied Geophysics

j ourna l homepage: www.e lsev ie r .com/ locate / j appgeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jappgeo.2015.02.023&domain=pdf
http://dx.doi.org/10.1016/j.jappgeo.2015.02.023
mailto:tamatorojohng@gmail.com
http://dx.doi.org/10.1016/j.jappgeo.2015.02.023
http://www.sciencedirect.com/science/journal/09269851
www.elsevier.com/locate/jappgeo


correctness. Residualmoveout (RMO)of the events on CIGs indicates in-
correctness of the velocity model and is used to update it. Conventional
RMO analysis is based on a simple scan in the CIG panels. A coherency
measure (semblance) is used to estimate a residual curvature which
matches to the event the best (Deregowski, 1990; Liu and Bleistein,
1995). Unfortunately, this conventional approach does not deal with
the uncertainty. At the same time it is well known that structural infor-
mation is fundamentally uncertain due to errors and inaccuracies in es-
timated velocity model. Since uncertainty has impacts on decisions that
have important social and commercial implications (Bond et al., 2007;
Osypov et al., 2011) its quantification is a major issue. The issue of un-
certainties in seismic images was discussed previously by Thore et al.
(2002), Pon and Lines (2005), Osypov et al. (2013) and Fomel and
Landa (2014). To address this issue in this paper we discuss a stochastic
approach of the RMO analysis.We suppose that the parameter of the re-
sidual curvature is not a deterministic fixed value but rather a random
variable ofwhich it is necessary to specify the distribution. The Bayesian
approach provides a natural and appropriate framework for uncertainty
analysis. This approach accounts for prior knowledge on the model in a
justifiable and coherentway. Contrary to the single value of RMO,which
is obtained in the conventional approach, the Bayesian approach pro-
vides us with the most probable RMO and the uncertainty associated
with it. Below in Sections 2 and 3, we introduce Common Image Gather
and present the conventional residual moveout analysis. Section 4 pre-
sents the Bayesian approach of residual moveout analysis. Examples on
synthetic and real data to compare the two approaches are shown in
Section 5.

2. Common image gather

Migration produces an image of the three spatial coordinates. Com-
mon image gathers exploit the redundancy of seismic data and produce
images withmore dimensions in the physical space. Usually this is done
by imaging the data as a function of their recording offset. For velocity
analysis it is useful to measure the differences between the CIG traces
(offsets) at a fixed image point. Fig. 1 shows twomigrated common off-
set images using a wrong velocity function. As can be noticed from the
figures, the depth position for the same surface location (marked by a
black point) is different for zero-offset and the 2500 m offset. We ob-
serve that the depth of a point at a fixed surface position is a function
of the offset. The panel which allows us to observe the evolution of mi-
grated points according to the offset is called Common Image Gather
(Fig. 2). In general, the events (evolution of the depth according to the
offset) observed on CIGs can be approximated by a hyperbolic curve
given by the following equation (Liu and Bleistein, 1995):

z hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ γ2−1

� �
h2

q
ð1Þ

where z0 is the depth observed at the zero-offset image,γ ¼ v
cwith v the

velocity used for the migration, c is the media velocity and h is the half-
offset. The traceswhich compose the CIGwill serve as data for the resid-
ualmoveout analysis. Those traces are stored as amatrix thatwe denote

by A ¼ ai j
� �

1≤ i≤Nz
1≤ j≤No

where Nz and No are the number of depth sam-

ples and offsets in the CIG respectively.

3. Conventional residual moveout analysis

For a fixed depth point z0 indexed by iz0 , the residual moveout curve
is fully determined by the parameter γ ¼ v

c. The conventional residual
moveout analysis algorithm defines for each depth z0 a set of values γ
and a corresponding set of residual moveout curves. A coherence

Fig. 1. (a) Image at zero-offset. (b) Image at offset 2500 m of synthetic data. Vertical line represents the surface position at 5425 m.
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Fig. 2. Offset Domain Common Image Gather at surface position 5425 m. The line in red
represents the depth's evolution as a function of the offset. The traces which are forming
the CIG serve as data for RMO analysis.
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