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Symplectic integrators are well known for their excellent performance in solving partial differential equation
of dynamical systems because they are capable of preserving some conservative properties of dynamic equations.
However, there are not enough high-order, for example third-order symplectic schemes, which are suitable
for seismic wave equations. Here, we propose a strategy to construct a symplectic scheme that is based on a
so-called high-order operator modification method. We first employ a conventional two-stage Runge–Kutta–
Nyström (RKN) method to solve the ordinary differential equations, which are derived from the spatial
discretization of the seismic wave equations. We then add a high-order term to the RKNmethod. Finally, we ob-
tain a new third-order symplectic scheme with all positive symplectic coefficients, and it is defined based on the
order condition, the symplectic condition, the stability condition and the dispersion relation. It is worth noting
that the new scheme is independent of the spatial discretization type used, and we simply apply some finite dif-
ference operators to approximate the spatial derivatives of the isotropic elastic equations for a straightforward
discussion. For the theoretical analysis, we obtain the semi-analytic stability conditions of our scheme with var-
ious orders of spatial approximation. The stability and dispersion properties of our scheme are also compared
with conventional schemes to illustrate the favorable numerical behaviors of our scheme in terms of precision,
stability and dispersion characteristics. Finally, three numerical experiments are employed to further demon-
strate the validity of our method. The modified strategy that is proposed in this paper can be used to construct
other explicit symplectic schemes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Seismic wave modeling is a powerful tool that can be used for
seismic disaster prediction, earth structure investigations, seismic
exploration, and other areas of study related to wave phenomenon.
With the developments in computer hardware, solving seismic equa-
tions with a direct method has becomemore andmore popular in prac-
tical applications. In the past decades, a variety of techniques for spatial
discretization have been developed, such as the finite differencemethod
(FDM) (Alford et al., 1974; Virieux, 1984, 1986; Moczo et al., 2000;
Etgen and O'Brien, 2007; Liu, 2014; Tan and Huang, 2014a; Wang
et al., 2014), the pseudo-spectral method (PSM) (Gazdag, 1981;
Kosloff and Baysal, 1982), the finite element method (FEM) (Marfurt,
1984; Ma and Liu, 2006; S. Liu et al., 2014), the spectral element method
(SEM) (Patera, 1984; Komatitsch and Vilotte, 1998; Cohen, 2002),
the nearly analytic discrete method (NADM) (Yang et al., 2003, 2009,
2010), and the Hamiltonian particle method (HPM) (Takekawa et al.,
2012, 2014). Other hybrid or optimized methods are also available
(Moczo et al., 1997; Takeuchi and Galler, 2000). Each method has its

advantages and disadvantages. Virieux et al. (2011) gave a classical re-
view of these methods in their paper. Here, we focus on time integration.

The most frequently used scheme for time integration is a second-
order central difference (CD) (Virieux, 1984, 1986), due to its efficiency
and ease of implementation. However, a significant drawback of the CD
method is its strong numerical dispersion (H. Liu et al., 2014; Tan and
Huang, 2014a). In practice, a significantly finer time increment than
what is indicated by the stability limit (the maximum time step for a
specific spatial discretization) should be adopted to reduce the temporal
error associated with a general spatial discretization. This may lead to a
dramatic increase in computing costs. Another favorable temporal
scheme is the explicit Newmark scheme (Y. Liu et al., 2014), which is
almost as efficient as CD method. When solving a second-order wave
equation, the Newmark scheme can simultaneously obtain both the
velocity field and the displacement field, and this schememay be useful
for ground motion evaluation (Magnoni et al., 2014). However, this
scheme also suffers from numerical dispersions especially for long-
time wavefield simulations (S. Liu et al., 2014).

An obvious strategy to reduce temporal errors is to use high-order
temporal schemes. However, high-order schemes generally correspond
to higher computational costs. To balance the competing goals of
computational precision and efficiency, Dablain (1986) first applied
the so-called Lax–Wendroff method (LWM) to obtain fourth-order
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temporal accuracy. The essential idea of LWM is to replace the high-
order temporal derivatives with high-order spatial derivatives based
on the Taylor expansion. In this case, only two matrix–vector multipli-
cations (the spatial discretization operator can be written as a matrix
form in the general case) can achieve fourth-order accuracy. Another
advantage of the fourth-order LWM over the CD is that the stability
limit of the former method is

ffiffiffi
3

p
times the stability limit of the latter

method. The increased stability limit allows for a larger time step,
which partially compensates for the increased computational costs. In
the past few years, many types of LWM have been developed, and
they utilize various spatial techniques to evaluate high-order spatial de-
rivatives, such as PSM (Chen, 2009; Long et al., 2013), FEM (De Basabe
and Sen, 2010), SEM (De Basabe and Sen, 2010), and NADM (Tong
et al., 2013). Recently, Liu and Sen (2013) proposed an arbitrary even-
order accuracy scheme in both the time and space domains for 2D
acoustic wave equations, which is based on a dispersion-relation-
basedmethod and uses an elaborate design of the finite difference sten-
cil. The extension to the 3D acoustic wave equations and the staggered
grid stencil is straightforward (Tan andHuang, 2014a,b). Tan andHuang
(2014a) proved that this dispersion-relation-based method is the same
as the LWM. Although the dispersion-relation-based method and its
optimized type have achieved excellent performance for modeling
acoustic wave propagation, their extension to elastic equations may be
extremely difficult because their dispersion relationsmay not be explic-
itly expressed in a general case.

Compared to explicit methods, implicit methods can adopt a
relatively larger time step, which has attracted some researchers who
would like to apply implicit methods to seismic wave modeling (Luo
et al., 2000; Yang et al., 2009, 2010). Implicit methods, such as the
second-order implicit symplectic method based on Pade's approxima-
tion, the implicit Runge–Kutta scheme, and the Adam scheme, involve
the inversion of Laplacian matrix to solve the acoustic wave equation.
Although direct LU decomposition yields an exact decomposition, it
requires an unaffordable amount of computational costs when it is ap-
plied to large-scale seismic wave modeling. Although the spectral or
the hybrid methods can reduce computational costs, it is different to
satisfy the requirements of high-precision seismic modeling andmigra-
tion by these methods due to their low accuracy (Luo et al., 2000).

Chen (2007) mainly discussed explicit high-order temporal integra-
tors for solving the acoustic wave equation, such as LWM, Nyström, and
the splitting methods. A detailed investigation indicated that the
symplectic Nyström and the splitting methods are far superior to the
LWM in terms of suppressing numerical errors in long-time computa-
tions. This phenomenon is easy to be understood because the symplectic
Nyström and splittingmethods have respectively fourth- and third-order
accuracies for solving the Hamiltonian system of the acoustic wave
equation. However, LWM, which implies that the velocity is approximat-
ed by a first-order forward difference, has only first-order accuracy
for the Hamiltonian system (Lu and Schmid, 1997). Ma et al.
(2014) delivered a comparative study of conventional second- to
fourth-order symplectic schemes combined with NADM for acoustic
and elastic wave modeling. Theoretical analyses and numerical ex-
periments showed that second-order partitioned Runge–Kutta (PRK)
method was very suitable for wavefield modeling because of its high-

efficiency rates. This method only requires two timesmatrix–vector mul-
tiplications for each time step. Li et al. (2012) developed a so-called
symplectic discrete singular convolution differentiator (SDSCD) to simu-
late elastic wave propagation, and it employs a convolution differentiator
for spatial derivatives and a three-stage third-order PRK for the temporal
derivative. The SDSCD is very powerful because it can not only capture
weak wave responses, but also is appropriate for long-time simulations.
Nissen-Meyer et al. (2008) implemented a fourth-order symplectic
scheme for elastodynamic spectral element method, which requires
four timesmatrix–vectormultiplications in each time step. The computa-
tional costs of the fourth-order symplectic scheme may be extremely
large compared with a second-order symplectic scheme. The computa-
tional costs of the three-stage third-order symplectic scheme may be
moderate because this method provides a compromise between numer-
ical accuracy and computational costs. However, in the literature, explicit
symplectic schemes, which require three timesmatrix–vectormultiplica-
tions, are not common (Ruth, 1983; Chen, 2007; Li et al., 2012). In this
study,we focus our attention on developing a new third-order symplectic
scheme to simulate seismic wave propagation.

Our strategy for exploring symplectic schemes is to add additional
terms into the conventional symplectic schemes. Specifically, we select-
ed a two-stage RKN to illustrate our strategy, and then we added a
square operator in terms of spatial discretization to the second equation
of RKN. Six symplectic coefficients should obey the order and symplectic
conditions, and we found one degree of freedom. We defined the coef-
ficients according to the stability condition and the dispersion relation,
andwe obtained two sets of solutions,which respectively corresponded
to the schemes that had the largest stability range (thedomain from0 to
stability limits) and the lowest amount of numerical dispersion, respec-
tively. We suggest one solution for practical use. The newly obtained
symplectic scheme is independent of the spatial discretization operator
that is used. In this case, we simply chose FDM to allow for straightfor-
ward discussions and comparisons. The properties of our scheme are
compared with the properties of conventional symplectic and non-
symplectic schemes in terms of the stability range and the amount of
numerical dispersion. The large stability limits and the low amount of
dispersion associated with this scheme suggest that it will be suitable
for practical use. Finally, numerical experiments were conducted to ver-
ify our theoretical analysis.

2. Derivation of the modified symplectic scheme

The medium of the real earth is extremely complex, and it includes
viscosity, porosity, and anisotropy (Ma and Liu, 2006; Magnoni et al.,

Table 2
Stability parameters for 2D elastic wave equation. M1–M5 schemes are applied for
time integration, and a tenth-order central difference operator is used for spatial
approximation.

Stability parameters M1 M2 M3 M4 M5

a 0.3743 0.3753 0.3753 0.3754 0.3754
b 1.2077 0.6973 0.9294 0.9018 0.6039

Table 1
Stability parameters for 1D–3D elastic wave equations. M1 is applied for time integration, and spatial derivatives are approximated by central difference operators.

Dimension and stability
parameters

The order of central difference

2 4 6 8 10 12 14 16 ∞

1D b 1.7321 1.5 1.4090 1.3586 1.3258 1.3025 1.2850 1.2711 1.1027
2D a 1 0.7586 0.5530 0.4431 0.3743 0.3286 0.2926 0.2668 0

b 1.7321 1.4656 1.3367 1.2598 1.2077 1.1697 1.1402 1.1166 0.7800
3D a 1.3385 0.7428 0.5378 0.4315 0.3421 0.3122 0.2879 0.2550 0

b 1.6420 1.3014 0.1161 1.0816 1.0281 0.9910 0.9630 0.9396 0.6366
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