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We propose a new approach to model ground penetrating radar signals that propagate through a homogeneous
and isotropicmedium, and are scattered at thin planar fractures of arbitrary dip, azimuth, thickness andmaterial
filling. We use analytical expressions for the Maxwell equations in a homogeneous space to describe the propa-
gation of the signal in the rockmatrix, and account for frequency-dependent dispersion and attenuation through
the empirical Jonscher formulation. We discretize fractures into elements that are linearly polarized by the in-
coming electric field that arrives from the source to each element, locally, as a planewave. Tomodel the effective
source wavelet we use a generalized Gamma distribution to define the antenna dipole moment. We combine
microscopic and macroscopic Maxwell's equations to derive an analytic expression for the response of each ele-
ment, which describes the full electric dipole radiation patterns alongwith effective reflection coefficients of thin
layers. Our results compare favorably with finite-difference time-domain modeling in the case of constant elec-
trical parameters of the rock-matrix and fracturefilling. Comparedwith traditionalfinite-difference time-domain
modeling, the proposed approach is faster andmore flexible in terms of fracture orientations. A comparison with
published laboratory results suggests that the modeling approach can reproduce the main characteristics of the
reflected wavelet.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Identification and characterization of permeable fractures within
rock formations are of central interest in hydrology (National Research
Council, 1996). The flow and transport behavior in fractured media
can be very complex and difficult to infer from traditional hydrological
experiments (Neuman, 2005). A promising approach is to combine hy-
drologic measurements with ground penetrating radar (GPR) data (e.g.
Olsson et al., 1992). Both surface reflection and cross-borehole tomo-
graphic monitoring studies have been used to infer the spatial distribu-
tion of tracer plumes and to dynamically image tracer transport through
preferential flow paths (Birken and Versteeg, 2000; Tsoflias et al., 2001;
Day‐Lewis et al., 2003; Talley et al., 2005; Becker and Tsoflias, 2010;
Dorn et al., 2011, 2012a). Furthermore, the ability of GPR to provide in-
formation about mm-thick fractures has been demonstrated theoreti-
cally (Hollender and Tillard, 1998; Bradford and Deeds, 2006; Tsoflias
and Hoch, 2006), through controlled experiments (Grégoire and
Hollender, 2004; Tsoflias et al., 2004; Sambuelli and Calzoni, 2010)
and by field-based investigations (Tsoflias and Hoch, 2006; Sassen and

Everett, 2009; Dorn et al., 2011, 2012b). In the complex environment
found in most fractured rock systems, efficient and effective interpreta-
tion of GPRmeasurements must rely on forwardmodels that accurately
simulate the experiments.

When an electromagnetic wave impinges on a thin layer, a series of
complex interference phenomena occur that alter both the phase and
amplitude of the reflected and transmitted waves. Such phenomena
have been studied extensively in optics and exact solutions are available
by applying the macroscopic Maxwell's equations and associated
boundary conditions on the sides of a dielectric slab (e.g., a fluid filled
fracture). These solutions have been used in geophysics to describe
how the GPR signal reflected from fractures varies as a function of ma-
terial properties, fracture thickness (aperture) and orientation
(Tsoflias and Hoch, 2006; Tsoflias and Becker, 2008).

Numerical GPR forward modeling schemes do not incorporate the
analytic nature of the effective reflection coefficients since space
discretization and medium parameterization implicitly account for
boundaries, across which the macroscopic Maxwell's equations are
solved. As spatial discretization becomes finer, themacroscopic numer-
ical solutions approach the analytically derived Fresnel reflection and
transmission coefficients. However, the finite spatial discretization
gives rise to errors, especially when modeling irregular geometries or
fine-scale structures. Sub-discretization schemes have been recently
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proposed (e.g., Diamanti and Giannopoulos, 2009) but the computa-
tional demand still remains for 3D implementations. Moreover, irregu-
lar geometries still pose a problem since FDTD codes usually
implement a Cartesian grid and tilted planar surfaces are not discretized
exactly; a known problem that is often referred to as “staircasing”. In
numerical solvers based in the time domain, insufficient temporal sam-
pling can also give rise to numerical dispersion (Bergmann et al., 1998).
Ray-tracing algorithms can include effective reflection coefficients, but
they rely on the plane wave assumption being valid everywhere along
an interface and only consider the far-field region of electromagnetic
radiation. Furthermore, ray-tracing workflows are often based on algo-
rithms developed for seismic processing (Dorn et al., 2012b) and ignore
the polarized response of GPR sources and reflections.

Amore general approach is to consider a fracture as a polarizable di-
electric and conductive anomaly, in which many infinitesimal dipoles
are induced and oscillate in response to the incident field. This approach
is exactly described by themicroscopicMaxwell's equations (e.g. Purcell
and Smith, 1986), in which matter is seen as a collection of polarizable
particles. The macroscopic boundary conditions can then be derived as
limiting cases of the microscopic approach through the Ewald–Oseen
extinction theorem (Fearn et al., 1996). The macroscopic approach is
thus an averaged version of the microscopic formulation, the latter not
only being correct in the quantum regime but also more intuitive
(Feynman et al., 1969). A numerical modeling application of the micro-
scopicMaxwell's equations has been used extensively by the astrophys-
ical community to describe light scattering from dielectric objects— see
Yurkin and Hoekstra (2007) for an overview— but we are not aware of
applications to GPR scattering.

We propose a forward modeling approach that uses analytic
solutions to simulate the propagation of electromagnetic waves within
homogeneous media and the scattering of the waves from fractures.
The fractures are seen as dielectric and conductive anomalies that are
polarized by the incident EM field and are defined as rectangular planes
with a givenmidpoint, azimuth, dip, thickness andmaterial filling. Each
fracture plane is discretized into polarizable elements, a formulation
which enables simulating heterogeneous tracer concentrations in the
fractures by varying the electrical properties of each element over
time, and also accounts for the change in direction and magnitude of
the incident electric field along the fracture plane. The elements are
modeled as infinitesimal dipoles that are polarized linearly and in paral-
lel to the incident electric field. Themain difference from the astrophys-
ical formulation is that we only assign effective dipoles along the plane
of the fracture. To account for the effect of the dipoles along the direc-
tion normal to the fracture plane we apply the Ewald–Oseen extinction
theorem and scale the dipoles by the effective reflection coefficients of a
thin layer. Another difference is that we only consider the incident field
caused by the external source and do not account for interactions
between elements. We use analytical expressions of the Maxwell
equations in a homogeneous space to describe the propagation of the
EM field to and from each element and allow for frequency-
dependent attenuation and dispersion through the Jonscher constitu-
tive formulation (Jonscher, 1999). The resulting forward modeling
scheme is free from boundary effects related to the modeled domain
size and also from discretization errors. We begin by describing the
theory before proceedingwith howwe discretize a fracture, and, finally,
we compare our forward modeling scheme to simulations based on a
well-established numerical code and to laboratory data.

2. Theory

The electromagnetic properties of matter that characterize the ve-
locity, attenuation and dispersion of electromagnetic (EM) energy in di-
electric media are the magnetic permeability μ (N A−2), the electric
permittivity ε (F m−1) and the conductivity σ (S m−1), or equivalently
the resistivity, ρ (Ωm), with ρ= σ−1. These parameters are in general
complex-valued and frequency dependent, while for many practical

geophysical purposes it is safe to assume the magnetic permeability to
be constant and equal to the value in vacuum, μ0 = 4π × 10−7 N A−2.
Reflections and transmissions arise at the boundary between contrast-
ingmedia and are a form of energy scattering. For geophysical purposes
it is customary to use the macroscopic Maxwell equations as the
governing physical principles to describe such systems (Zonge et al.,
1991) and the link between the propagating field to a given medium
is made through the constitutive relations, D = ε E and J = σ E,
where E (V m−1) is the incident electric field arising from a distant
source, J (A m−2) is the resulting current density and D (C m−2) is the
electric displacement field.

There is a theoretical distinction between permittivity and conduc-
tivity because the first describes polarization effects resulting from
bound charge and the second conduction effects resulting from free
charge. In practice, these two parameters can be combined since one
can only measure the in-phase and out-of-phase components of the
current (Hollender and Tillard, 1998). It is thus convenient to define
the effective permittivity εe (F m−1) with real and imaginary parts
that characterize the propagation properties of the material: wave ve-
locity, attenuation and dispersion.

2.1. The microscopic viewpoint

While the electric displacement field D was introduced by Maxwell
and is proportional to the “bound” charge density within a dielectric
(Purcell and Smith, 1986), it is only an approximation resulting from
spatial averaging of a microscopic process that involves interaction
between fields and particles that make up matter. The microscopic de-
scription was introduced by Lorentz (1916) and considers a dielectric
as a collection of particles that undergo electronic polarization from an
externally applied electric field. The applied field exists independently
of the dielectric medium and travels through the dielectric medium at
the speed of light in vacuum, that is, in the free space between the
particles of the dielectric. As it travels through the medium it polarizes
the particles that make up the dielectric, inducing moments of charge
distribution in each particle. For neutral dielectrics it is only the electric
dipole moment that needs to be considered and polarization can be
seen as the result of an induced charge separation that generates an
electric dipole moment p ¼ q dL r̂d for separation dL (m) between
two opposite charges of equal magnitude q (C) and orientation r̂d. The
electric field produced by such a dipole moment can be accurately cal-
culated for an observation distance r (m) much larger than the charge
separation dL producing the dipole moment and becomes exact in the
limiting case, dLr →0, in which the induced dipole is often called a point
dipole. The electric field of the point dipole is given by:

Ed r;pð Þ ¼ 1
4πε0

k2 r̂� pð Þ � r̂þ 3 r̂ r̂ � pð Þ−pð Þ 1
r2

− i k
r

� �� �
ei k r

r
ð1Þ

where r̂ is a unit vector pointing from the point dipole to the point of ob-
servation r ¼ r r̂ , r (m) is the magnitude of r, ε0 ≡ 8.854… ×
10−12 F m−1 is the electric permittivity in vacuum and k (rad m−1) is
the wavenumber in vacuum. The vacuum wavenumber is given by
k = ω c−1, where ω (rad s−1) is the angular frequency and c ≡ 299
792 458 m s−1 is the speed of light in vacuum. Eq. (1) includes the
near, intermediate and far-fields generated by a dipole p located at the
origin of the coordinate system. We use the subscript d in the electric
field (Ed) to denote that it corresponds to a point dipole. A generalized
expression for the electric field at an arbitrary location r generated
from a dipole located at r′ is easily obtained through the substitution
r → r–r′. A detailed derivation of Eq. (1) can be found in classical
electrodynamics textbooks (e.g., Jackson, 1998).

Each particle in a dielectric medium is polarized by a superposition
of the applied field generated by a source far away and the fields gener-
ated by all the other particles present in the dielectric. For a uniform

207A. Shakas, N. Linde / Journal of Applied Geophysics 116 (2015) 206–214



Download	English	Version:

https://daneshyari.com/en/article/4739969

Download	Persian	Version:

https://daneshyari.com/article/4739969

Daneshyari.com

https://daneshyari.com/en/article/4739969
https://daneshyari.com/article/4739969
https://daneshyari.com/

