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To understand the effect of the components' electrical properties on the electrical spectra of a mixture, a three-
dimensionalfinite differencemethod (3D-FDM) is employed to extract the effective permittivity and conductivity
of mixtures. The simulation results indicate that: (1) the variation of the conductivity of the inclusion and the
host could control the effective permittivity of the mixtures at the low frequency side; (2) the variation of the
permittivity of the host and the inclusion could control the effective conductivity of the mixtures at the high
frequency side; (3) with the increase of the permittivity of the inclusion and the host whose permittivity has a
fixed ratio,ttra the spectral curve of the effective permittivity shifts to the upper-left corner and that of the effec-
tive conductivity shifts to the left; (4) with the increase of the conductivity of the inclusion and the host whose
conductivity has a fixed ratio, the spectral curve of the effective permittivity shifts to the right and that of the
effective conductivity shifts to the upper-right corner. Therefore, this study revealed some intrinsic physical
quality of the electrical spectra of mixtures and provided a new idea for the explanation of electrical spectra
dispersion of rocks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Sandstone, limestone, shale and soil are typical mixtures from a sub-
surface formation. They are usually composed of several components
with different electrical properties. Therefore, their macro-electrical
parameters are affected by the electrical parameters of the components
they contain. Many experiments indicate that the effective conductivity
and permittivity of mixtures are frequency-dependent (Jonscher, 1977;
Kruschwitz, 2008; Lesmes and Frye, 2001; Lesmes and Morgan, 2001;
Scott, 2003; Slater et al., 2006; Sturrock, 1999). The electrical properties
of the earth materials are of great significance for environment moni-
toring (Robert and Lin, 1997; Slater and Lesmes, 2002), reservoir
parameter evaluation (Weller et al., 2010a,2010b), hydraulic property
assessment (Binley et al., 2005; Slater, 2007), earthquake prediction
(Mogi, 1985) and so on.

In order to explain the frequency dispersion of conductivity and
permittivity of rocks, some empirical models were developed, such as
the Debye model (Debye, 1929), the Cole–Cole model (Cole and Cole,
1941; Pelton et al., 1978) and the Dias model (Dias, 2000). The Cole–
Cole model uses some empirical coefficients to control the shape and
position of the spectroscopy curves and has been successful at fitting

data from most experiments. However, these empirical models can
only fit the dispersion curves of permittivity and conductivity but
cannot reveal the intrinsic physics of characteristics of frequency
dispersion.

Based on effective media theory, some analytic equations were
developed to calculate the effective permittivity and conductivity of
simple composites which consist of spherical or ellipsoidal inclusions
(Liu and Shen, 1993;Maxwell, 1904; Reynolds andHough, 1957). How-
ever, the analytic methods can only be used to compute the composites
with very simple structures.

In order to study the composites with more complex structure,
scientists introduced a variety of numerical methods to study the
effective permittivity of mixtures with periodic, stratified or random
structures (Boudida et al., 1998; Brosseau, 2006; Beroual and Brosseau,
2001; Brosseau and Beroual, 2001; Mejdoubi and Brosseau, 2006a;
Mejdoubi and Brosseau, 2006b; Myroshnychenko and Brosseau, 2005a;
Myroshnychenko and Brosseau, 2005b; Sareni et al., 1996a; Sareni et al.,
1996b; Sareni et al., 1997a; Sareni et al., 1997b). Some of the numerical
methods can also be used to obtain the complex permittivity of the mix-
tures (Myroshnychenko and Brosseau, 2005a, 2008; Sareni et al., 1996a).

The effect of shape (Beroual et al., 2000; Brosseau andBeroual, 2003;
Mejdoubi and Brosseau, 2006c; Qin and Brosseau, 2012), spatial
orientation (Beroual et al., 2000), and volume ratio (Beroual et al.,
2000; Myroshnychenko and Brosseau, 2008) of the inclusion on the
effective permittivity of mixtures can also be analyzed conveniently by
these numerical methods.
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So far, a number of numerical methods have been successfully
used to calculate the effective permittivity and conductivity of
complicated composites, such as the finite difference method (FDM)
(Kärkkäinen et al., 2001), finite element method (FEM) (Krakovský
and Myroshnychenko, 2002; Mejdoubi and Brosseau, 2006a,2006c;
Myroshnychenko and Brosseau, 2005a,2005b; Sareni et al., 1996a;
Zhao et al., 2004), boundary-integral equation method (BIEM) (Ghosh
and Azimi, 1994; Sareni et al., 1997a,1997b), boundary elementmethod
(BEM) (Sekine et al., 2002) and finite-difference time-domain (FDTD)
method (Mejdoubi and Brosseau, 2006d; Wu et al., 2007).

In addition, the digital core modeling (DCM) technique developed
rapidly in recent years. The DCM technique can be used to simulate
mixtures with non-periodic structure (Zhu et al., 2012). Liu et al.
(2009) discussed the application of the DCM technique in the simula-
tion of electrical properties of rocks and showed some advantages of
the DCM technique.

Numerical modeling can overcome the bias caused by laboratory
measurements and obtain effective dielectric constant of rocks with
given geometric structures and physical properties. In this study, we
compute the effective permittivity and conductivity of models of simple
composites by a 3D-FDM. The purpose of this study is to reveal
the relation between the characteristics of spectroscopy of a mixture
and the electrical parameters of the component that the mixture
contains.

2. Methodology

Taking sand stone as an example, it can be assumed to be a mixture
with periodic structure. According to the mixing law, we can use one
unit of a mixture with periodic structure to evaluate the electrical
properties of the mixtures (Fig. 1). Based on the quasielectrostatic
assumption, a 3D-FDM can be used to extract the effective dielectric
constant and conductivity of the 3D model of mixtures with periodic
structure (Asami, 2006).

The 3D-FDM method uses a cubic capacitor model which has n ×
n × n cubic element cells (Fig. 2(a)) and n × n × n nodes. The node is
located at the center of each cubic element (Fig. 2(b)). In the cubic
model, we can have any symmetrical inclusion which can make the
model satisfy the periodic boundary conditions. Each node is connected
with the other six nodes (Fig. 2(b)). Since there is neither current sink
nor source in the element (i, j, k), the total electric currents that flow
into the cubic element equal to zero,

I1 þ I2 þ I3 þ I4 þ I5 þ I6 ¼ 0; ð1Þ

where I1 is the current that flows into the node (i, j, k) from the
node (i − 1, j, k).

I1 ¼ ϕi−1; j;k−ϕi; j;k

� �
Y1; ð2Þ

where Y1 is the admittance between the node (i − 1, j, k) and the
node (i, j, k) (Fig. 3(d)) and ϕ(i, j, k) is the potential on the node (i,

j, k). Therefore, Y1 is the series admittance of a half of the element
cube (i − 1, j, k) and a half of the element cube (i, j, k),

1
Y1

¼ 1
2Yi−1; j;k

þ 1
2Yi; j;k

; ð3Þ

Y1 ¼ 2dσ�
i−1; j;kσ

�
i; j;k

σ�
i−1; j;k þ σ�

i; j;k
: ð4Þ

In the same way, we can get the equations of I2, I3, I4, I5 and I6. Then
the finite difference equation of ϕi, j,k can be derived from Eq. (1) and
written as:

ϕi; j;k ¼ ðY1ϕiþ1; j;k þ Y2ϕi−1; j;k þ Y3ϕi; jþ1;k þ Y4ϕi; j−1;k þ Y5ϕi; j;kþ1

þ Y6ϕi; j;k−1Þ Y1 þ Y2 þ Y3 þ Y4 þ Y5 þ Y6ð Þ−1
:

ð5Þ

The potentials on the top and the bottom face are fixed at 0 and 1 V,
respectively. The initial potentials of the other nodes are set to be 0.5 V.
On the other four sides of the cube, there is no current pass through
them since there is no source applied in these directions. The nodal
potentials ϕ(i, j, k) are unknown, we can establish (n− 2) × n2 simulta-
neous equations for the potentials at all the nodes except those on the
top and the bottom side. The simultaneous equations are solved by
the successive over-relaxation iteration algorithm. By summing up
currents on the top surface, we can obtain the total current that goes
through an x–y plane,

I ¼
Xn
i¼1

Xn
j¼1

Ii; j ¼
Xn
j¼1

Xn
i¼1

Yi; j ϕi; j;kþ1−ϕi; j;k

� �
: ð6Þ

By using Y= I / V, the effective complex conductivity σ⁎ of the cubic
model can be calculated,

σ� ¼ I
V
L
S
¼ σ eff þ jωε0εeff ; ð7Þ

where L is the height of the cubic model, V= V1–V0, S is the area of the
top face of the model (Fig. 2(a)), σeff and εeff are effective conductivity
and relative dielectric constant of the cubic system, respectively.

According to the mixing law, we need only to analyze one unit
element of the periodic composite material to extract the effective
electrical parameters. One unit element usually consists of a host and
inclusion (Fig. 4). The electrical parameters in our model are complex,
for example, the complex dielectric constant of the host is

ε�h ¼ ε0εh− j
σh

ω
; ð8Þ

(a) (b) (c)

Fig. 1. Simplified model of a mixture with periodic structure. (a) The mixture with periodic structure, (b) a patch of the mixture, (c) a unit of the mixture.
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