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Stepped-frequency radar is a prominent example of the class of continuous-wave radar systems. Since raw data
are recorded in frequency-domain direct investigations referring to the frequency content can be done on the
raw data. However, a transformation of these data is required in order to obtain a time-domain representation
of the targets illuminated by the radar.
In this paper we present different ways of arranging the raw data which then are processed by means of the in-
verse fast Fourier transform. On the basis of the time-domain result we discuss strengths andweaknesses of each
of these data structures. Furthermore, we investigate the influence of phase noise on the time-domain signal by
means of an appropriate model implemented in our simulation tool.
We also demonstrate the effects of commonly known techniques of digital signal processing, such aswindowing
and zero-padding of frequency-domain data. Finallywe present less commonly knownmethods, such as the pro-
cessing gain of the (inverse) fast Fourier transformbymeans ofwhich the signal to noise ratio of the time-domain
signal can be increased.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Stepped-frequency radar is a prominent candidate in the class of
continuous-wave (cw) radars which is often realized in scientific
ground penetrating radar (GPR) research by means of commercially
available measurement devices, such as vector network analyzers
(VNA). However, since the stepped-frequency continuous-wave
(SFCW) radar works in frequency domain, its working principle is
more complex compared to that of e.g. a time-domain based pulsed
radar where the desired signal containing the target's reflection peaks
is yielded directly by recording the echo of the transmitted pulse by
means of some appropriate sampling unit.

In order to identify characteristic spectral properties of targets illu-
minated by the radar, an SFCW system is highly appropriate since it
makes the spectrum accessible directly to the user. Hence, all particular
features are immediately available. However, often a time-domain rep-
resentation is desiredwhich allows discovery of the presence of a target
by means of its typical reflection patterns, e.g. when utilizing GPR for
civil engineering, (Liu and Sato, 2014; Wei and Zhang, 2014), detection
of pipes and cables buried in ground, (Seyfried et al., 2012; Seyfried
et al., 2014b) archeological purposes (Urban et al., 2014) and unexplod-
ed ordnance disposal (Mohana et al., 2013; Yarovoy et al., 2004). A
time-domain representation of frequency-domain data can be obtained
by performing an inverse discrete Fourier transform (DFT) on these
data. A common technique in digital signal processing (DSP) which

implements a DFT is the fast Fourier transform (FFT) and its counterpart,
the inverse FFT. (Lyons, 2011; Mahafza, 1998; Marple, 1987)

This paper is focused extensively on the arrangement of the rawdata
within different types of data structures on which the inverse FFT is fi-
nally applied to. We demonstrate their strengths and weaknesses espe-
cially with respect to their appropriate time-domain outcome. We also
summarize and demonstrate frequently used techniques of digital sig-
nal processing such as windowing the raw data in order to reduce
sidelobes of the time-domain peaks and we examine less commonly
known issues such as processing gain of the FFT and the influence of
phase noise on the results of SFCW radar measurements.

In Section 2 we discuss different types of data structures feeding the
inverse FFT. The influence of phase noise on SFCW radar data is investi-
gated in Section 3 by means of an appropriate model implemented in
our simulation tool. In Section 4 different DSP techniques for pre-
processing the radar raw data are presented. Finally in Section 5 we
discuss our results and conclude our paper.

2. Data structures

Performing the forward fast Fourier transform (FFT) on a data array
containing the sampled version of a time-domain signal with n purely
real samples with spacing Δt= 1/fs (fs is the sampling frequency) yields
a data array of again length n containing the complex valued elements
of the signal's spectrum for frequencies with spacing Δf = fmax/(n − 1)
(with the maximum frequency is half the sampling frequency, fmax =
fs/2). Fig. 1 shows the symbolic spectrum of the time-domain signal
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alongwith the structure of the data array obtained bymeans of the FFT.1

There it is assumed that n is odd. Then, the first array element contains
the DC component followed by (n − 1)/2 positive frequency compo-
nents corresponding to frequencies Δf, 2Δf,…, (n− 1)/2Δf. The subse-
quent bins2 contain the (n − 1)/2 negative frequency components
which are (for, again, purely real time-domain samples) the conjugates
of the positive ones inmirrored order, i.e. from f=− (n− 1)/2Δf,…,
− Δf. Thus, the samples for negative frequency components do not
carry any additional information with respect to the positive ones.
When n is even the first array element contains the DC component
followed by n/2 − 1 positive frequency components corresponding to
frequencies Δf, 2Δf, …, (n/2 − 1)Δf. Bin n/2 contains the Nyquist
frequency component, fmax. The subsequent bins contain the n/2 − 1
negative frequency components which are again the conjugates of the
positive ones in mirrored order, i.e. from f = − (n/2− 1)Δf, …, − Δf.

Therefore, in order to obtain a time-domain signal from a recorded
spectrum it is sufficient to have knowledge of solely the positive fre-
quency components, as they are provided by a vector network analyzer
(VNA) utilized as stepped-frequency radar. For each of in total N dis-
crete frequencies, fi (i = 0 … N − 1) in the closed frequency interval
fmin … fmax, fi = fmin + i ⋅ Δf, the VNA outputs a complex-valued data
sample, A ⋅ ejφ, with amplitude A and phase φ, which incorporates a co-
herent sum of all contributions from T targets illuminated by the radar,

A � ejφ ¼
XT
t¼1

at � ejφt : ð1Þ

Here, each target reflection can be expressed in terms of an attenua-
tion factor (in respect to the transmittedwave of constant amplitude aTx),

at ¼ at;Rx=aTx ð2Þ

and a phase,

φt ¼ 2π f tt; ð3Þ

dependent on the time, tt, through which the electromagnetic wave
travels from the transmitter Tx to the t-th target and back to the receiver
Rx. Fig. 2 shows the raw complex valued frequency-domain data array of
length N3 and its appropriate symbolic spectrum recorded by means of
the VNA. There exist several possibilities of how to arrange this raw

data within an array onwhich finally the inverse Fourier Transform is ap-
plied in order to obtain a time-domain representation of the recorded
data. Belowwe explain each type of arrangement alongwith its strengths
and weaknesses.

2.1. Unshifted and shifted lowpass transformation

Applying the inverse FFT on an array containing the raw data from
Fig. 2 arranged as shown in Fig. 3 is the first type and we refer to it as
the unshifted lowpass transformation (LPT). The array structure exhibits
(for increasing bin number) the zero DC component followed by the
raw data samples followed by the conjugated raw data in reversed
order.4 The resulting extended array as well as the time-domain data
array is of length 2N+1. Hence, amajor characteristic for the unshifted
LPT is, that the raw data samples are not aligned within the extended
data structure such, that their frequency content is in synchronization
with the appropriate frequency of the bins of the inverse FFT.

The frequency mismatch can be obliterated by applying the inverse
FFT on an extended data array as shown in Fig. 4 which contains

Fig. 1. The structure of the spectral data array when applying the fast Fourier transform on
n purely real samples of a time-domain signal. Themaximal frequency corresponds to half
the sampling frequency, fmax = fs/2. Here, n is assumed to be odd.

Fig. 2. The structure of the spectrum data array of length N obtained by means of a VNA.
Samples are obtained for discrete frequencies in the interval Δf in the closed frequency
range fmin … fmax.

1 In thefigures the spectra of the signals are shown in a continuous representation even
though they actually contains only discrete components.

2 We use here the terms FFT or Array bin and FFT or Array element and FFT or Array sam-
ple interchangeable.

3 Without loss of generality we assume throughout the paper that N is even-numbered.

Fig. 3. For the unshifted LPT the first raw frequency-domain sample obtainedmeans of the
VNA is aligned with the DFT frequency bin representing frequency Δf. Thus, raw frequen-
cy-domain samples do not coincidewith the appropriate DFT frequency bins. The negative
frequency components are obtained by means of mirroring a conjugated version of the
positive ones around DC. Throughout the paper, the positive and negative spectra are
depicted by the same individual diagonal patterns.

4 In all figures the positive spectrum (i.e. raw data recorded by means of the VNA) and
the negative spectrum (i.e. conjugated raw data in reversed order) are plotted with the
same individual diagonal pattern style throughout the paper.
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