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Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering
an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and
their time window have an obvious effect on the validity of classification and require iterative experimentation
and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster
analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition
(EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data
using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution
enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for
validation. The application results show that seismic facies analysis can be improved and better help the interpre-
tation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool
than classical 1D grid SOM method, especially for waveform cluster with a narrow window.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The key to reservoir modeling is the effective evaluations of rock
properties and accurate mapping of their heterogeneity. Various types
of information, including core samples, well logs, production data,
seismic data, and geological setting, are used in this model building
(de Matos et al., 2007; Rezaee, 2002). Due to the heavy cost of drilling,
there is usually no adequate number of wells to build the model for
relatively large areas. Specifically, data from well logs and cores only
represents local properties of the reservoir and it is unreliable to extrap-
olate these properties to thewhole prospectwith the absence of enough
wells. In this case, 3D seismic data plays an important role in identifying
the lateral changes of reservoirs and describing their geological features.
Changes in lithology, porosity, and fluid content lead to changes in
amplitude, frequency, lateral continuity and other seismic attributes
(de Matos et al., 2007). Thus, if changes of seismic parameters can be
identified and interpreted, some valuable information of reservoirs
may be extracted and may help in the understanding of subsurface
geology.

Seismic facies analysis aims to interpret the variations of seismic
response parameters. The so-called seismic facies can be defined as

groups of seismic traces; members of the same group possess similar
wave sharp. They can be viewed as the manifestation of specific sedi-
mentary facies or geologic bodies in seismic data (John et al., 2008).
So far there have been severalmethods and techniques of pattern recog-
nition applied to the classification of seismic facies with varying degrees
of success (e.g., Jin et al., 2007; Li and Castagna, 2004; Saggaf et al.,
2003). When the geological information is unavailable, unsupervised
pattern classification has been demonstrated as a powerful method for
seismic facies analysis (de Matos et al., 2007). The self-organizing map
(SOM) (Kohonen, 2001) is certainly one of the most successful neural
network algorithms applied to unsupervised classification (e.g., Roy
et al., 2010, 2012; Singh et al., 2004; Taner et al., 2001).

Seismicwaveform and attribute values are themost commonly used
inputs to the classification process. Since the seismicwaveformcontains
integrated information of multiple attributes such as amplitude, fre-
quency and phase, it is more reliable to use this integrated data directly
to analysis and classification (Singh et al., 2004). However, there also
exist some unnecessary information such as noise and insensitive
parameters to changing geologic structure in seismic waveform. There-
fore, when we use seismic waveform as the input for classification,
the outcomes are generally more susceptible to noise and lower in
resolution. When we use attributes values as the input, if appropriate
attributes can be extracted from seismic waveform to serve as the
input, the results of classification may provide higher resolution and
lower amount of noise (Kuroda et al., 2012). However, the seismic attri-
butes selection is a difficult problem and requires utmost care because
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of its evident effect on the result of classification (Raeesi et al., 2012).
There is no criterion for the selection of which attributes can best repre-
sent the changes in rock property (Coléou et al., 2003). This leads to
more uncertainty about whether the seismic attributes we used are
the optimal one to the local structural feature and what is the relation-
ship between them. Therefore how to enhance the accuracy of SOM
clustering while preserving its reliability has been a research topic in
seismic facies analysis.

Seismic data volumes are significantly noisy and greatly redundant.
The classification can be greatly optimized by using appropriate prepro-
cessing on seismic data (Coléou et al., 2003). de Matos et al. (2007)
applied time-frequency techniques to the SOM clustering by using the
WTMMLA curves derived from trace singularities as the input data.
Saraswat and Sen (2012) employed Artificial Immune System (AIS) to
the compaction of seismic data and use the reduced data for SOM
processing. Both of them focus on the reprocessing of seismic data in
order to obtain an excellent input to the SOM clustering.

Empirical Mode Decomposition (EMD), as a new decomposition
method for analyzing nonlinear and non-stationary data introduced
by Huang et al. (1998), has been increasingly used for seismic signals
analysis and demonstrated great potential in this application.
(e.g., Battista et al., 2007; Wen et al., 2009; Xue et al., 2013, 2014). In
this method, complicated seismic signals can be decomposed into a
series of Intrinsic Mode Functions (IMFs) in the temporal domain
(Xue et al., 2014). In essence, this decompositionmethod can be consid-
ered as a dyadic filter bank that serves a similar function to wavelet
transform (Flandrin et al., 2004). But unlike wavelet transform required
for pre-set base function, it is an adaptive data-driven method based on
the local characteristic of data in time scale. Therefore, EMD method
offers some distinct advantages over wavelet transform used for noise
reduction and resolution enhancement of seismic data (Battista et al.,
2007; Ehrhardt et al., 2012; Huang et al., 2011; Xue et al., 2013).

In this study, we introduce EMD method into unsupervised seismic
facies analysis based on SOM. The seismic signals are decomposed by
EMD to obtain the featured subsignals reconstructed by a number of
IMFs that highlight the fine details and smooth noise. This step is to
remove spikes, reduce noise and improve resolution of seismic data.
Then, the reconstructed seismic subsignals are allowed as the input to
SOM clustering and the useful geological information can be extracted
from the results of clustering. In this paper, we will first introduce the
concept of SOM and EMD, and then test our method on synthetic and
real data.

2. Principle and methods

2.1. Empirical Mode Decomposition (EMD)

EMD aims to obtain IMF which is a monofrequency signal. Thus IMF
has well-behaved Hilbert transforms and the physical meaning. Each
IMF is defined to meet the following conditions (Huang et al., 1998):

(1) The number of zero-crossings and extrema is the same;
(2) The mean value of the upper envelops and the lower envelops is

equal to zero.

EMD is carried out by a sifting process. The decomposition of a signal
into IMFs by EMD is performed as follows:

1. Find out the maxima and the minima of the original signal.

2. Construct the upper envelops and the lower envelops of the signal.
Generally the cubic spline method is used.

3. Obtain the mean values by averaging the upper and the lower
envelopes.

4. Subtract the mean values from the original signal. Ideally, the first
IMF component is produced. If the signal obtained by subtracting
the mean values from the original signal does not meet the IMF

condition, repeat the steps 1–4 to this signal until the first IMF com-
ponent is obtained.

5. Subtract the first IMF component from the original signal and carry
out the steps 1–4 to the residual component until all the IMFs are
obtained.

After decomposition, the original signal can be expressed as a sum of
IMFs and the residual component which is usually a monotonic
function.

From the sifting process of EMD, we can find that the different IMF
has different frequency ranges and probably highlights different details.
For seismic data, the subsignal reconstructed by the selected IMFswhich
is the main component of the original seismic signal can highlight the
fine details and reduce the noise.

2.2. Classification using SOM and EMD

Seismic facies analysis is an efficient measure of predicting the
underlying structure and depositional environment by recognizing
and analyzing the characteristics of a group of seismic reflections. The
SOM, as a type of unsupervised learning (Kohonen, 2001), has been
widely used in seismic facies analysis (de Matos et al., 2007; Roy et al.,
2010; Saraswat and Sen, 2012; Taner et al., 2001). The EMD method is
an excellent data reconstruction algorithm that removes the noise and
preserves essential features of original seismic data. In our method, we
introduce the EMD method into seismic facies analysis based on SOM
to obtain an enhancement.

The workflow of proposed method is illustrated in Fig. 1. We first
decompose seismic data into IMFs using EMD method. Then, the IMFs
which contain the fine information and smooth noise are chosen to
reconstruct a new seismic data. Next, we allow the reconstructed data
as the input to SOM training and clustering with different numbers of
facies. Comparing the facies maps, the optimal facies number can be
defined.

In this workflow, the selection of the IMFs and facies numbers
should be noticed. The proper selection of IMFs usually results in a bet-
ter de-noising effect on seismic data. Thus it is not hard to see that the
selection of IMFs directly affects the quality of the classification based
on our method. Each original seismic trace usually produces a series
of IMFs. Then, we should analyze the features of the IMFs displayed as
seismic sections and the correlation coefficients between each IMF
and original seismic trace. The IMFswhich have higher correlation coef-
ficients and greater similarity to the original seismic trace on sections
will be selected for reconstruction. The deserted IMFs tend to have
low correlation and a lot of noise which is evident from the seismic
sections.

The number of classes, i.e., the number of seismic facies, has impor-
tant effects on the classification process and should be estimated very
carefully (Raeesi et al., 2012). A low number of classes can only offer a
very rough classification in which some important information may be
obscured and the facies of interest usually cannot be identified. Con-
versely, the high number of classes can enhance details and accuracy
of the classification; however, it also produces lots of redundant facies
which might complicate the interpretation. In unsupervised seismic
facies analysis, one can use more seismic facies than the number of ex-
pectant geofacies in the researched region (Raeesi et al., 2012). Because
the additional facies could be required to represent the noise (Roy et al.,
2012), including background noise and horizon interpretation noise
caused by interpretation errors or time displacement, and the transition
zone between the main facies. The noises are represented by one or
several facies with haphazard distribution; while the transition zone's
facies usually distribute along the periphery of the main facies. The
best situation is that with the increasing number of classes, the main
facies remain about the same andonly thenumber of unnecessary facies
is in the growth. Therefore, the estimation of the number of classes in
study area requires iterative testing and prior knowledge.
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