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The ant colony optimisation algorithm has successfully been used to invert for surface magnetic data. However,
the resolution of the distributions of the recovered physical property for deeply buried magnetic sources is not
generally very high because of geophysical ambiguities. We use three approaches to deal with this problem.
First, the observed surface magnetic data are taken together with the three-component borehole magnetic anoma-
lies to recover the distributions of the physical properties. This cooperative inversion strategy improves the resolu-
tion of the inversion results in the vertical direction. Additionally, as the ant colony tours the discrete nodes,we force
it to visit the nodes with physical properties that agree with the drilled lithologies. These lithological constraints re-
duce the non-uniqueness of the inversion problem. Finally, we also implement a K-means cluster analysis for the
distributions of themagnetic cells after each iteration, in order to separate the distributions of magnetisation inten-
sity instead of concentrating the distribution in a single area.We tested ourmethod using synthetic data and found
that all tests returned favourable results. In the case study of the Mengku iron-ore deposit in northwest China, the
recovered distributions of magnetisation are in good agreement with the locations and shapes of the magnetite
orebodies as inferred by drillholes. Uncertainty analysis shows that the ant colony algorithm is robust in the
presence of noise and that the proposed approaches significantly improve the quality of the inversion results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Inspired by the social behaviour of individuals in nature (swarms),
particle swarm optimisation (PSO) and ant colony optimisation (ACO)
are two kinds of important swarm intelligence algorithms, both of
which have been successfully applied in the inversion of geophysi-
cal data. For example, Tronicke et al. (2012) applied PSO-based
optimisation strategies to reconstruct 2D P-wave velocity fields from
crosshole traveltime data sets. Shaw and Srivastava (2007) used a PSO
algorithm to invert for direct current (DC), induced polarisation (IP)
and magnetotelluric (MT) data sets over a multilayered 1D earth
model. Fernández Martínez et al. (2008, 2010) also used PSO to invert for
vertical electric sounding (VES) and 1D DC data. ACO has primarily been
used to invert for seismic records, e.g., Chen et al. (2005a, 2005b), Yan
et al. (2009), and Xu and Song (2012), who inverted the impedances of
the horizontal layer model and the Rayleigh wave dispersion curves.
Using ACO and PSO, Yuan et al. (2009) inverted the parameters of the
fixed shape model according to gravity and magnetic anomalies. Liu et al.
(2014) introduced the node partition strategy ACO (NP-ACO) algorithm
to recover the density and magnetisation distributions of potential field

data and showed that ACO can be use to obtain distributions of physical
properties that are sharper than those obtained by traditional linear inver-
sionmethods. For their test cases, ACO showed good optimisation capabil-
ity, robustness, parallel implementation and portability.

Despite the foregoing examples, deep-buried magnetic bodies can-
not be accurately recovered using current ACO methods, however. For
example, in the synthetic test cases of Liu et al. (2014), the two parallel
prisms, the core of the syncline, the deeper magnetic body of cut prisms
and the reproduced prisms could not be clearly differentiated, due to
the inherent geophysical non-uniqueness and to the low resolution of
the surface magnetic data. The recovery of the distributions of physical
properties is therefore problematic. Additionally, because of the rapid
attenuation of magnetic anomalies with the increase in distance be-
tween sources and observers, the resolution of deepermagnetic sources
of surface magnetic anomalies is relatively low, especially where the
magnetic anomalies are concealed by significant interference.

We present three strategies to deal with this problem, making full
use of borehole information obtained from magnetic three-component
anomalies and lithological logs. First, we simultaneously invert for
surface and borehole magnetic data as per Li and Oldenburg (2000).
Borehole magnetic data have a higher vertical resolution and help to
improve the ability of the method to identify deeply buried magnetic
sources. Second, we use drillhole lithologies as a priori information in
order to introduce an additional constraint to the iterative optimisation
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process, thereby reducing geophysical non-uniqueness. It is more con-
venient to add such drillhole constraint information to stochastic inver-
sion methods than to linear inversion methods. As pointed out by Yao
et al. (2007), nonlinear global optimisation algorithms do not need to
compute the derivatives of the high-dimensional objective function
and therefore have a decreased technical threshold for combining dif-
ferent kinds of constraint conditions. The nonlinear inversion methods
simplify the mathematical description of geological constraints and
make the combination of complex geological and geophysical con-
straints more convenient. To implement the additional constraint, we
interfere with themovements of the ant colony and constrain the phys-
ical properties of the drilled mesh cells according to the drilled litholo-
gies. Third, we analyse the distributions of the magnetic cells and
divide them into K clusters based on their spatial distributions. Here,
cluster analysis is the task of grouping a set of objects such that the
objects in the same group are more similar to each other than to those
in other groups. Cluster analysis is the main task of the exploratory data
mining and a common technique for statistical data analysis; it is used
in many fields, including machine learning, pattern recognition, image
analysis, information retrieval and bioinformatics. K-means clustering,
as a classic clustering method based on distance similarity, has been
widely applied to near-surface geophysics and exploration geophysics.
For example, Eppstein and Dougherty (1998) implemented a 3D
traveltime tomography in which the dimensionality and geometry of
the parameterisation are dynamically determined using cluster analysis,
together with region merging using random field union. Paasche and
Tronicke (2007) proposed a novel 2D approach based on fuzzy c-mean
cluster analysis (i.e., K-means analysis) for the cooperative inversion of
disparate data sets. Paasche et al. (2010) evaluated the regularised
missing-value fuzzy c-means cluster algorithm and applied it to a data-
base comprising of partially collocated crosshole tomographic P- and
S-wave-velocity models. Paasche and Eberle (2009) employed fuzzy
c-means (FCM) cluster analysis for the rapid and largely automated inte-
gration of complementary geophysical data sets comprising airborne
radiometric and magnetic as well as ground-based gravity data. Paasche
et al. (2006) demonstrated the potential of the fuzzy c-means (FCM) clus-
tering technique to combine the information contained in the physical-
property models that result from inverting the individual data sets and
to estimate the spatial distribution of the petrophysical parameters in
the regions where these are known at only a few locations. Ugalde and
Morris (2010) applied clustering and kernel density distribution tech-
niques to a Euler-generated data set. Sun and Li (2011, 2012) used this
technique for geophysical inversion with petrophysical constraints by
introducing an additional term that measures the misfit between the re-
covered cluster centres and those estimated a priori from the rock sample
measurements. Teranishi et al. (2013) advanced a 3D joint inversion
method to estimate two physical parameters, namely the density and
the magnetisation of subsurface materials; this they achieved using field
intensity measurements and by introducing the fuzzy c-means (FCM)
clustering technique to relate gravity to the magnetic data. Li and Sun
(2014) used fuzzy c-means clustering to implement the magnetisation
vector inversion to limit themagnetisation directions into a small number
of possible directions. The K-means cluster analysis separates the
magnetisation distributions and improves the inversion quality.

The present paper is organised as follows. We begin with a descrip-
tion of the ant colony optimisation methodology. We then discuss the
details of the inversion of the surface and borehole magnetic data and
of the K-means cluster technique. The method is then tested using
synthetic and real data. Finally, we conclude with a brief discussion.

2. Methodology

2.1. Ant colony optimization algorithm

Ant colony optimisation (ACO) is primarily used to solve discrete
combinatorial optimisation problems (COPs), including the travelling

salesman problem (TSP) and the quadratic assignment problem (QAP).
The inversion of magnetic data minimises the multi-dimensional and
continuous objective function

ϕ mð Þ ¼ ϕd mð Þ þ λϕm mð Þ; ð1Þ

where ϕ is the objective function;m is the model parameter; ϕd and ϕm

are the data misfits and regularisation terms, respectively and λ is the
regularisation factor.

We implement the node partition strategy ACO (NP-ACO) (Liu et al.,
2014) to invert for the surface and boreholemagnetic data. Thismethod
minimises the continuous objective function of Eq. (1) by discretising
the continuous model parameters. Therefore, the ranges (i.e., the mini-
mum andmaximum values) for all model parametersmust be specified
prior to dividing the model parameters into the discrete nodes
(see Fig. 1). The model parameter ranges are usually divided equally
into discrete nodes, but they also can bedivided unequally. For example,
it is reasonable to divide the ranges with a higher probability into a
greater number of nodes. While a smaller node spacing may lead to a
higher accuracy of the inverted parameters, it also increases the compu-
tational cost (Liu et al., 2014). The optimal node spacing is therefore
determined by a trade-off between the inversion accuracy and the com-
putational cost. After the discretisation of themodel parameters, the ant
colony visits the nodes layer by layer, touring from node (i − 1,j) to
node (i,k) with the transition probability

P i;kð Þ
i−1; jð Þ tð Þ ¼

τ i;kð Þ tð Þ
h iα

η i;kð Þ tð Þ
h i1−α

XN
l¼1

τ i;lð Þ tð Þ
h iα

η i;lð Þ tð Þ
h i1−α

; ð2Þ

where i=1, 2, ⋯, n− 1, j, k=1, 2, ⋯,N, τ(i,k) is the number of pheromone
trails at node (i,k), η(i,k) is the heuristic function related to some a priori
information, α and 1 − α are the coefficients specifying the relative
weights of the pheromone trails and the heuristic function, and n and
N are the number of layers and the number of partitions for each
layer, respectively (see Fig. 1). When all the ants have completed their
tour, the number of pheromone trails at node (i,j) is updated using

τ i; jð Þ t þ 1ð Þ ¼ 1−ρð Þτ i; jð Þ tð Þ þ∇τ i; jð Þ tð Þ; ð3Þ
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Fig. 1. Diagram of the ant colony optimisation algorithm minimising the continuous and
multi-dimensional function.
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