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Seismic data may suffer from too severe noise contamination to carry out further processing and interpretation
procedure. In the paper, a new schemewas proposed based on the fractional Fourier transform (FrFT) in time fre-
quency domain to mitigate noise. The scheme consists of two steps. In the first step, the seismic signal is filtered
with the ordinary Butterworth filter in the frequency domain. The residual noises after frequency filtering are
with the same frequencies with the filtered seismic signals. In order to mitigate the residual noises further, the
FrFT filter is applied in the second step. The results from the simulated seismic signals and the measurements
data verify the validity of the proposed scheme in both frequency and time–frequency domains.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Subsurface image construction and rock property estimation
within the earth are essential tasks for seismic exploration. Many
types of data, however, may suffer from too severe noise contami-
nation to carry out such tasks. Random noise can adversely affect
seismic data analysis and should be suppressed before data pro-
cessing and interpretation. In many cases, therefore, noise mitiga-
tion is essential in order to extract useful information from the
raw measurements (Beckouche and Ma, 2014; Bonar and Sacchi,
2012).

Fundamentally, noises/interferences mitigation is implemented
in various domains, where noises/interferences can be separated
clearly. Frequency domain is the first one to perform such tasks. Follow-
ing it, various domains have been explored in seismic signal processing,
such as f ~ x domain (Chen andMa, 2014), λ ~ f domain (Forghani et al.,
2012), and f ~ k domains (Hennenfent and Herrmann, 2006;
Hennenfent et al., 2010). As the generalization of such domains,
Radon transform and edge-preserving smoothing and scalarmedian fil-
ter (SMF) are also commonly used (Ibrahim and Sacchi, 2014; Oropeza
and Sacchi, 2011). One of the advantages of such extended technologies
is that less smearing among adjacent samples is produced after noise at-
tenuation compared to other methods. For example, the SMF can re-
move an abnormal impulse from seismic records without smearing
the impulse into its nearby samples as the mean or f ~ x filters (Hui-
Qun and Zhi-Xian, 2014).

More recently, the curvelet domain has been presented as the
methodology for adaptive subtraction (Kustowski et al., 2013;

Liang et al., 2014). The curvelet transform decomposes data into a
linear, weighted sum of curvelets, with each curvelet like a small
piece of wavefront or reflector. Such curvelets are parameterized
by a dominant period, a dominant dip/velocity, and two location
coordinates.

Noise mitigation in curvelet domain has proven to be an excel-
lent technique for suppression of incoherent, as well as coherent
noise in seismic data. The increased level of parameterization rela-
tive to the well known f ~ k domain, allows for a more refined char-
acterization of the noise. It also reduces the likelihood of signal and
noise overlap. Altering any curvelet coefficient has a local impact,
with a smaller chance of damaging the signal of interest compared
to the global transforms, such as the Fourier transform in frequency
domain.

The basic implementation of curvelet noise mitigation involves
thresholding of the coefficients in the curvelet domain and it can
handle only data with a relatively constant level of incoherent
noise (Liu, 2013).

Recent years also see the sparse representations of seismic data have
played a more and more important role in seismic noise mitigation as
the generalizations of the curvelet domain. New methods based on
sparse representations include shearlets (Ma and Plonka, 2010), and
contourlets (Neelamani et al., 2008). Therefore, sparse representations
in a transform domain offer a promising framework to seismic-data
denoising.

Another promising domain, named time–frequency, has also seen
the applications in seismic exploration. For example, the optimal
Gabor transform, based on the time–frequency rotation property of
the fractional Fourier transform, is used to carry out the spectrum de-
composition of the seismic signal. Results show that the instantaneous
frequency slices obtained in time–frequency domain are superior to
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the ones obtained by the traditional domain (Chen et al., 2013; Zhang
et al., 2010).

However, there is no concerning of application of time–frequency to
noise/interference mitigation yet. In the paper, we propose a new
scheme based on the fractional Fourier transform (FrFT) in time–fre-
quency domain to mitigate noise. In the scheme, an FrFT-based signal
decomposition algorithm is utilized to decompose received seismic sig-
nals into a linear combination of signal components in the FrFT domain.
As a transformation tool, the Gabor representation is employed to esti-
mate the maximum amplitude response in the fractional transform do-
main. Furthermore, seismic signals are decomposed into the signal
components and noisy components, whose locations are separated
clearly in the FrFT domain. Then, a reverse FrFT transform is applied to
the separated signals to recover the expected signals, while the noises
will be mitigated greatly. Analytical and simulation results show that
the proposed noise mitigation based on the FrFT is an alternative meth-
od to perform high signal-noise-ratio (SNR) performance of seismic
signals.

In the paper, we evaluate the performance of the noise mitigation
based on the FrFT representations in seismic signal processing applica-
tions. The paper is outlined in the following way. The fundamentals of
the FrFT can be found in Section 2, while the proposed method to miti-
gate the noises/inferences is detailed in Section 3. In Section 4, the per-
formance of the proposed scheme is presented with applications to
various simulated seismic signals and the measurement data. The
paper is concluded in Section 5.

2. Fundamentals of fractional Fourier transformation

The idea of fractional powers of the Fourier transform operator
appears in the mathematical literature as early as 1929.

Later on it was used in quantum mechanics and signal processing
(Mcbride and Kerr, 1987; Namias, 1980; Zhi-Na et al., 2013).

The continuous fractional Fourier transform can be defined as:

f a ξð Þ ¼
Zþ∞

−∞

Ka ξ; xð Þ f xð Þdx ð1Þ

where the kernel Ka(ξ, x) is defined as follows. Set α ¼ aπ
2 then

Ka ξ; xð Þ ¼ e−
iπ sgn sinαð Þ−2α

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinαj j

p e−iπ 2 xξ
sinα− x2þξ2ð Þ cotα½ �: ð2Þ

Note that for a∈ ℤ, the FrFT is with some special properties that we
can use. For example, if a = 4k, k ∈ ℤ, the FrFT becomes the identity
f4k(ξ, x) = f(ξ), hence the kernel is in that case

K4k ξ; xð Þ ¼ δ ξ−xð Þ; k∈ℤ ð3Þ

and for a ∈ 2 + 4ℤ, this is the parity operator f2+ 4k(ξ, x) = f(−ξ),
corresponding to the kernel f2+ 4k(ξ, x) = δ(ξ + x).

In addition, the following properties are also very important in signal
separation.

For a ∈ 1 + 4ℤ, F a = F1 = F is just the Fourier operator F , and
for a∈ 3+4ℤ, Fa= F3= F2 F in other words, if f1(ξ)= F[f(x)] is the
Fourier transform, then f3(ξ) = f1(−ξ).

This should make clear that F a can be interpreted as the ath power
of the Fourier transform which may be interpreted modulo 4. So, we
have for example the well known properties F aF b = F a + b, and
F aF − a = I is the identity.

Like for the Fourier transform, there exists a discrete version of the
fractional Fourier transform. It is based on an eigenvalue decomposition
of the discrete Fourier transform matrix. A signal sequence can be
written as

f ¼ f x0ð Þ; f x0 þ Δð Þ; F x0 þ 2Δð Þ;…; f x0 þ NΔ−Δð Þ½ �T :
¼ f 0; f 1;…; f N−1½ �T : ð3Þ

The discrete Fourier transform of this vector is defined as the vector
fa = F a[f]|a = 1, and can be expressed as

faja¼1 ¼ Ff ð4Þ

where theN×NDFTmatrix F has entries that are theNth roots of unity:
F k;nð Þ ¼ 1ffiffiffi

N
p Wkn withW ¼ e−i2πN .

Hence

f1 kð Þ ¼
XN−1

n¼0

F k;nð Þ f nð Þ ¼
XN−1

n¼0

f nð Þe−i2πkN ð5Þ

If the discrete Fourier transformmatrix F= EΛE−1 is the decomposition
we mentioned before, then F = EΛaE−1 is the corresponding discrete
fractional Fourier transform.

It should be noted that the DFT matrix F satisfies F4 = I with I the
identity matrix.

It has the eigenvalues [1,− i, − 1, i] = [e ikπ/2, k = 0, 1, …, N − 1].
It has also N independent orthonormal eigenvectors that can be

arranged as the columns of a matrix E, so that its eigenvalue decompo-
sition is F = EΛET.

The definition of the discrete fractional Fourier transform is then
easily given as a multiplication with a (fractional) power of the Fourier
matrix.

3. The proposed noise mitigation based on the FrFT transform

3.1. Fundamentals of signal separation based on the FrFT

From the definitions, we can see that the FrFT can decompose a
signal in one dimension (t domain in our case) into two dimensions
([a, ξ] domain). The first dimension a, called the fractional order,
is the fractional domain, while the second dimension ξ can be
interpreted as different meaning according to the signal's property
and the value of the first domain a. For example, if the signal is f(t)
in time domain, ξ can be interpreted as frequency when a ∈ 1 + 4
ℤ according to the FrFT properties. Therefore, the FrFT adds an
extra degree of freedom in signal processing, and hence there is a
possibility that signals and noise/interference can be separable in
some of the domains [a, ξ].

One of the applications of FrFT is to separate signals from noise/
interference in the FrFT domain where the conventional Fourier
transform may fail. As discussed, a time-domain signal can be repre-
sented inmultiple FrFT domains (because the order a can have different
values), there is a potential to separate signals from noise/interference
in some of the FrFT domains. As for numerical example, we used two
chirp signals mixed together in time domain:

y tð Þ ¼ A0 e−i2π f 1tþa1ð Þt þ e−i2π f 2tþa2ð Þth i
ð6Þ

where the two chirp signals are with the same amplitude A0.
The first chirp signal is with linear frequency function with time as

f1t + a1, while the second one with the linear frequency with time
as f2t + a2. The parameters are as follows: f1 = 10, a1 = 0, f1 = 10
and a2 = 25. Such signal, and its power spectra and time–frequency
representations, are all illustrated in Fig. 1a. It is observed that these

63M.-Y. Zhai / Journal of Applied Geophysics 109 (2014) 62–70



Download	English	Version:

https://daneshyari.com/en/article/4740031

Download	Persian	Version:

https://daneshyari.com/article/4740031

Daneshyari.com

https://daneshyari.com/en/article/4740031
https://daneshyari.com/article/4740031
https://daneshyari.com/

