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Objective: To solve the inverse problemswhen outliers exist in the seismic data and discontinuities such as layer
boundaries need to be clearly delineated and merge the low frequency information to the inverted parameters.
Methods: L1-norm misfit function, total variation regularization, a priori information constraints, method of
Lagrange multipliers, and iteratively re-weighted least squares.
Results and conclusions: Integrating the L1-normmisfit function, total variation regularization and a priori infor-
mation constraints via the method of Lagrange multipliers, we create the objective function of seismic inversion
to solve the inverse problems that outliers exist in the seismic data and discontinuities such as layer boundaries
need to be clearly delineated. In addition, the priori information constraints ensure the inverted parameters have
low frequency components.
Practice: The proposed inversion method is successfully tested on noisy synthetic seismic data with outliers and
real seismic data.
Implications: If there are a small number of outliers in the seismic data, we need to do the seismic inversion in a
way that minimizes their effect on the estimated parameters. However, the L2-norm misfit function is highly
susceptible to even small numbers of inconsistent seismic observations. As an alternative to L2-norm, one can
consider the solution that minimizes the L1-norm misfit function (L1MF) which will be more outlier-resistant,
or robust, than the L2-norm solution. Of course, there are some alternative techniques to find the favorable reg-
ularization parameters. A set of good regularization parameters is the key of the seismic inversion process.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Robustness is an important property in seismic inversion strategy.
The potential disadvantages of computing L2-norm misfit function to
solve seismic inverse problems have long been assessed. Many scholars
discussed a variety of robust procedures. Claerbout and Muir (1973)
givemany examples to illustrate the advantages of L1-normmisfit func-
tion inversion. They point out that these advantages are based on the
fact that solutions to L2 normmisfit function tend to overstate the influ-
ence of outliers which may arise from the procedural measurement
error, or other reasons, in the seismic data. However, there are some
disadvantages in the L1-norm optimization. The biggest one is that the
inverse problem is nonlinear. In order to solve this problem, the most
useful method is simplex-basedmethod for linear programming exten-
sions of Gaussian method (Barrowdale and Roberts, 1974; Bloomfield
and Steiger, 1984). The other techniques for L1-norm minimization
methods are based on the interior-point and iteratively re-weighted
least square (Aster et al., 2005, 2013; Coleman and Li, 1992; Portnoy

and Koenker, 1997; Scales et al., 1988; Watson, 2000). The iteratively
re-weighted least square (IRLS) method is the simplest way to imple-
ment in L1-norm optimization. It is most attributed by Schlossmacher
(1973), Beaton and Tukey (1974). Byrd and Pyne (1979) provided the
convergence results through numerous references to the use of IRLS,
and so did Bissantz et al. (2009). Huber (1996) reviewed the history
of methods for finding the robust solutions and discussed a variety of
robust procedures.

In addition, total variation regularization (TVR) is appropriate for the
inverse problemswhenwe expect to estimate the discontinuitieswhich
are desirable in geologic environments with abrupt changes in P-wave
impedance, such as carbonate caves, salt bodies, or strong faults.
Methods for TVR are discussed in the following references (Osher and
Fedkiw, 2002; Rodriguez, 2013; Varela, Verdin and Sen, 2006; Vogel,
2002). Due to the band-limited nature of seismic data, we add a priori
information constraints as regularization terms to ensure the inverted
parameters contain low frequency information.

Integrating the L1-norm misfit function, total variation regulariza-
tion and a priori information constraints via the method of Lagrange
multipliers (Hansen, 1992), the objective function of seismic inversion
is created. In order to find the solution of this inverse problem, we use
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IRLS strategy. The proposedmethod is tested on noisy synthetic seismic
data with some outliers. At last, we perform this method using real seis-
mic data to further verify its feasibility and stability.

2. Objective function

L2-norm misfit function solutions are highly sensitive to even small
number of outliers which are data points highly discordant with the
other seismic data. If there are some outliers in the seismic data due to
incorrect measurements or other reasons, it is necessary to do the seis-
mic inversion in a way that can minimize their effects on the inverted
parameters. As an alternative to L2-norm misfit function, we consider
to solve the inverse problem via minimizing the L1-norm misfit func-
tion, which is as the following

ek k1 ¼ G mð Þ−dk k1 ð1Þ

where e is the vector of the residual,d is the vector of the seismic data,G
is the forward operator, and m is the vector of the earth model param-
eters. For seismic inversion, m is the vector of P-wave impedance. The
L1-norm misfit function solution will be more robust than the L2-
norm one, because Eq. (1) does not square each of the terms in the
misfit measurement. In Claerbout and Muir's words, the median value
is more robust than the mean one (Claerbout and Muir, 1973).

The L1-norm misfit function solution is the maximum likelihood
estimator for noisy seismic data corresponding to an exponential distri-
bution
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where, x is a random variable, μ is the expectation, and σ is the standard
deviation.

Seismic data distributed as exponential distributions are unusual.
However, it is worthwhile to solve an inverse solution based on L1-
norm misfit function rather than L2-norm misfit function. Even if most
of the seismic data noise is distributed as normal distribution, there
are reasons to doubt the existence of outliers.

In addition, total variation regularization is appropriate for the in-
verse problem when we expect to estimate the layer boundaries or
edges. In the one-dimensional case, the first order TVR function is

TVR1 mð Þ ¼ T1mk k1 ð3Þ

and the second order TVR function

TVR2 mð Þ ¼ T2mk k1: ð4Þ

In Eqs. (3) and (4),
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we can see that T1 is the first order finite difference operation, and T2 is
the second order finite difference operation. For higher dimensions, T1
and T2 are often implemented as finite difference approximations to
the gradient and Laplacian operators, respectively.

Here we hope to consider all the solutions with ‖Tim‖ b δ and select
the onewhich canminimize Eq. (1). So the inverse problem has the fol-
lowing form

min G mð Þ‐dk k1
Timk k1bδ

�
ð7Þ

where, i = 1, 2.
Using the Lagrange multiplier technique, Eq. (7) can be turned into

an unconstrained optimization problem

min G mð Þ−dk k1 þ α Timk k1 ð8Þ

where α is the regularization parameter for TVR.
Due to the band-limited nature of seismic data, a priori information

constraint can be added as a regularization term to ensure the inverted
parameters containing low frequency components. The contents of the
a priori model m come from well log data, geological horizons, or
other sources. In seismic inversion processing, according to the defini-
tion of reflection coefficient

r tð Þ ¼ m t þ 1ð Þ−m tð Þ
m t þ 1ð Þ þm tð Þ ð9Þ

when r(t) is small it can be approximated as

r tð Þ≈Δm tð Þ
2m tð Þ≈
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Fig. 1. (a) noise-free seismic data and (b) seismic data with 10% Gaussian random noise
and outliers.
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