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In this study, we investigate the use ofmultivariate statisticalmethods for geophysical data filtering. For this pur-
pose, a measured scalar field is vectorized using a moving window technique and mean vector and covariance
matrix are calculated by employing memory-efficient numerical algorithms. These multivariate statistics are
then used to conduct principal component analysis (PCA). Namely, covariance matrix is decomposed into a set
of eigenvalues and eigenvectors. By selecting a subset of eigenvectors, a PCA-based filter is realized. We demon-
strate how properties of the filter are determined by the chosen subset of the eigenvectors, which in turn depend
on spectrospatial properties of the field. In particular, we presented approaches to construct low-pass and spatial
directional PCA-based filters. As an application, we aim at suppressing leveling errors commonly occurring in
airborne data sets. The devised PCA filter was analyzed using a real aeromagnetic data set and synthetic leveling
errors. The scenarios of statistically dependent and independent leveling errorswere studied. Finally, we success-
fully applied it to real aero-electromagnetic data leveling.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate statistical methods provide a large variety of tech-
niques aimed at both analyzing and filtering data consisting of multiple
variables (Härdle and Simar, 2007). These methods find numerous
applications in geophysics (Reynolds, 2011). For instance, full-tensor
gradiometry data can be viewed as a set of statistical variables and
analyzed using multivariate statistical methods. These methods, how-
ever, cannot be directly applied to scalar fields such as those obtained
from aero-magnetic or aero-electromagnetic surveys. Nevertheless, by
using a moving window approach (also known as sliding window or
rolling window), data can be represented as a set of statistical variables
and thus become suitable for multivariate statistical methods. One of
such methods is principal component analysis (PCA), which has found
many applications in geophysics (Chung and Nigam, 1999; Egbert and
Booker, 1986; Guo et al., 2009; Minsley et al., 2012; Smirnov and
Egbert, 2012). Here, we apply the combination of the moving window
approach and PCA to analyze structure of the field and suppress leveling
errors in airborne geophysical data.

Leveling errors typically occur during collection of geophysical data
along profile lines over large areas and result in a random, possibly spa-
tially correlated, displacement of measurements from neighboring pro-

file lines. This creates a characteristic washboard or strip pattern
perpendicular to the survey profile direction. The effect has long been
recognized when working with aero-magnetic (Yarger et al., 1978) or
aero-electromagnetic (Valleau, 2000) data sets. Leveling errors can be
caused by diurnal Earth's magnetic field drift (Minty, 1991), tempera-
ture variations in measuring devices (Siemon, 2009), flight direction
changes or calibration errors (Huang, 2008) and eventually hinder the
interpretation and can cause severe artifacts when inverting data.

Several methods exist to remove or suppress this type of errors.
Some approaches are based on FFT filtering (Ferraccioli et al., 1998;
Minty, 1991; Nelson, 1994; Siemon, 2009), whereas other techniques
make use of different fittingmethods such as least squares, polynomials
or B-splines (Beiki et al., 2010; Mauring et al., 2002; Yarger et al., 1978).
Many of the methods depend on so called tie-lines — a few lines mea-
sured perpendicular to the main survey profiles. Differences at the
cross points between the original profiles and the tie-lines are then
used to quantify leveling errors. If no tie-lines are available, some
authors suggest choosing a reference line that is presumably free of
leveling errors (Huang, 2008) or applying robust median filters using
a moving window (Mauring and Kihle, 2005). Alternatively, one could
build a directional filter using discrete wavelet transform (Fedi and
Quarta, 1998; Paoletti et al., 2007). Few researchers have addressed
the problem of suppressing leveling errors by means of multivariate
statistical methods.

We present amethod to suppress leveling errors that is based on the
multivariate statistical analysis. The method does not require tie-lines
and is readily valid for survey areaswith arbitrary contours, gaps inside,
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and quasi-regular observation layouts. We start with the definition of
the multivariate statistics in a moving window, derive a PCA-based
filter, and discuss the problem of the dependent noise in data and
consequences from the statistical point of view. We then shortly de-
scribe differential polynomial fitting (DPF) approach (Beiki et al.,
2010) used to compare efficiency of the PCA filter. Finally, we test
the devised methodology on the real magnetic field with synthetic
leveling errors, compare its efficiency with DPF and apply it to the real
aero-electromagnetic data from Siberia.

2. Theory and method

2.1. Data in moving window

Before applying multivariate statistical methods, measured fields
need to be vectorized and represented as a set of random variables. To
this end, we introduce the moving window approach. Denote d∈ℝNd

a real vector consisting of Nd data measurements. Every measurement
dk is assigned a pair of coordinates (x, y)k. Data are measured and ar-
ranged in Np quasi-parallel profile lines. For clarity, we will assume
that the lines are directed eastward. If this condition is not fulfilled,
one can rotate profiles to point eastward. Fig. 1 shows a schematic ex-
ample of a geophysical survey layout.

We define a rectangular window of size n × m points centered at a
measurement point dk, k = 1 … Nd with n and m being odd numbers.
Fig. 1 illustrates an example of the rectangular window of size 5 × 3
centered at the k-th measurement point. A subset of points situated in
the moving window at any position is called a window sampling. By
cascading all the window rows, we can write down the measurement
points in a window sampling as a vector of size N = n × m. In other
words, for a rectangular window of size n × m points centered at a
measurement point k, we construct a window sampling vector
wk ∈ ℝN as

d1;1 d1;2 ⋯ d1;n
d2;1 d2;2 ⋯ d2;n
⋮ ⋮ ⋱ ⋮

dm;1 dm;2 ⋯ dm;n
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: ð1Þ

Every window sampling vector wk is a point in the N-dimensional
space. Each dimension of such space is formed by the respective ele-
ment of the moving window. Fig. 2a shows a synthetic signal d
consisting of 13 data values. Choosing a moving window of size 3 × 1
yields eleven window samplings, excluding positions of the window
at the first and last measurements where one data point inside thewin-
dow is missing. Fig. 2b shows the window sampling vectors plotted as
points in the three-dimensional space. The points colored in blue and
green are the values which form window sampling vectors w ∈ ℝ3 at
the 3rd and 11th positions. This simplified example serves to show
that the moving window approach is in fact a mapping of the original
scalar signal into some higher dimensional vector space. Such space
captures the behavior of the signal in some vicinity of each measure-
ment and facilitates application of various multivariate statistical
methods.

Details on extending this approach to quasi-regular survey layouts
are given in Appendix A.

2.2. Multivariate statistics in moving window

Adopting the moving window approach introduced in the previous
section enables us to consider a scalar geophysical field d as a vector
field, i.e. at any position there exists vector w ∈ ℝN as defined by
Eq. (1). Vectorw is a multivariate random variable that is characterized
by its probability density function f(w) with respective expected value
μw and covariance matrix Cw. These quantities can be written following
Tabachnick et al. (2001) using

μw ¼ E wð Þ ¼
Z ∞

∞
w f wð Þdw ð2aÞ

Cw ¼ E wwT
� �

−μwμ
T
w: ð2bÞ

In practice, we want to get discrete estimations of the multivariate
statistics presented in Eqs. (2a) and (2b). Therefore, we first define a
moving window with N points and construct sampling vectors for all
Nd points in the data set d. These vectors can be combined into a matrix
F of size Nd × N where the kth row is given by (wk)T. Following the ap-
proach adopted in this work, every column of this matrix is a random
variable, whereas the whole matrix is a statistical sampling with the
uniquely defined mean vector and covariance matrix. Calculating
mean values for all columns and arranging them in a vector yield a sam-
ple mean vector that approximates μw from Eq. (2a). More precisely,
this can be written as

μ̂w ¼ 1
Nd

1T F; ð3Þ

where 1T is a row vector with all elements equal one such that 1TF is a
vectorwhich contains sumsof the columns of F. Accordingly, the covari-
ance matrix is then given by (cf. Eq. (2b))

Ĉw ¼ 1
Nd

FT F−μ̂wμ̂
T
w: ð4Þ

Aswasmentioned in the previous section, a set of window sampling
vectors is a point cloud in the N-dimensional space characterized by its
discrete joint probability distribution. The samplemeanvector in Eq. (3)
gives a point in the space thatminimizes the sum of Euclidean distances
from all points to it

μ̂w ¼ argmin
v∈ℝN

jjv−wkjj2; ð5Þ

whereas sample covariance matrix provides the estimation of linear
dependence between all pairs of random variables (or, equivalently,
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Fig. 1. Sketch of a survey layout. Black points indicatemeasurement positions grouped into
Np profile lines. The dashed line depicts a rectangular window of size 5 × 3 centered at the
measurement point k.
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