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Three dimensional numericalmodeling has been a viable tool for understandingwave propagation in real media.
The poroelastic media can better describe the phenomena of hydrocarbon reservoirs than acoustic and elastic
media. However, the numerical modeling in 3D poroelastic media demands significantly more computa-
tional capacity, including both computational time and memory. In this paper, we present a 3D poroelastic
staggered-grid finite difference (SFD) scheme. During the procedure, parallel computing is implemented to
reduce the computational time. Parallelization is based on domain decomposition, and communication be-
tween processors is performed using message passing interface (MPI). Parallel analysis shows that the
parallelized SFD scheme significantly improves the simulation efficiency and 3D decomposition in domain
is the most efficient. We also analyze the numerical dispersion and stability condition of the 3D poroelastic
SFD method. Numerical results show that the 3D numerical simulation can provide a real description of
wave propagation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Seismic modeling has been largely limited to the media of a sin-
gle phase elastic solid. However, the environment of hydrocarbon
reservoirs is a composite multiphase medium with gas and/or
liquid occupying the voids between solid grains, which can be
described by the theory of poroelasticity. The Biot (1956a,b,
1962) is the basis for the numerical simulation of wave propaga-
tion in fluid saturated poroelastic media.

A variety of different numerical methods have been used for
poroelastic modeling, such as spectral method (Degrande and De
Roeck, 1992), finite difference method (Gao and Zhang, 2013; Zhang
and Gao, 2013), discontinuous Galerkin method (Dupuy et al., 2011),
and finite volume method (Lemoine et al., 2013), etc. Due to the low
memory requirement and computational cost,finite differencemethods
have been widely applied for porous wave equations.

Studies of wave propagation based on 3D finite difference have
contributed to a better understanding of the source process, wave
path effects, and basin structure response (Pitarka, 1999; Moczo
et al., 2000). In order to handle the tremendous computational and
memory requirements that are inherent to the 3D SFD technique, a
variety of computational approaches have been developed and

implemented. The most efficient parallel implementations are ones
which are optimized to balance the computational load and mini-
mize the communication between processors. This can be easily
achieved for an explicit SFD method by domain decomposition
(Bohlen, 2002; Sheen et al., 2006). Each processor solves the problem
within its small subdomain and, at each time step, communication
with neighboring processors using message passing interface (MPI) is
performed to exchange wave field near the boundaries (Minkoff,
2002). In our study, we provide a 3D parallel staggered-grid finite dif-
ference method for poroelastic media using domain decomposition
and MPI, we also provide the discussion on numerical dispersion and
stability condition.

This paper is organized as follows. In Section 2, based on Biot's theo-
ry, we derive the 3D poroelastic wave equation in a first-order, velocity-
stress system. Then, we present the staggered-grid finite difference
scheme and give the dispersion relation for 3D poroelastic media; we
also provide the stability condition in Section 3. In Section 4, a parallel
finite difference scheme is implemented with domain decomposition
and MPI, and the parallelization analysis is also presented. We give the
numerical results of a homogeneous and a three layered poroelastic
media in Section 5. Finally, we provide the conclusion of this paper in
Section 6.

2. Wave equations for 3D poroelastic media

Biot (1956a) established the dynamic equations in a porous elastic
solid saturated by a compressible viscous fluid. Dai et al. (1995)
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developed a first-order hyperbolic system that is equivalent to Biot's
equations. Based on the wave equations in a 2D porous media men-
tioned above, we derive the velocity-stress formulation for a 3D
poroelastic media.

According to Biot's theory, the equations of motion for a 3D porous
media are given by

∂u
∂t ¼ A

∂u
∂x þ B

∂u
∂y þ C

∂u
∂z þ Du; ð1Þ

here, the vector of unknowns is

u ¼ vx; vy; vz;wx;wy;wz; τxx; τyy; τzz; τxy; τxz; τyz; s
h iT

; ð2Þ

where (vx, vy, vz) is the solid particle velocity vector, (wx, wy, wz) is the
fluid particle velocity vector, and (τxx, τxy, τxz, τyy, τyz, τzz) is the solid
stress tensor. The parameter s is related to the fluid pressure p and the
porosity ϕ as follows,

s ¼ −ϕp: ð3Þ

The matrixes of coefficients in Eq. (1) are presented in Appendix.

3. Dispersion analysis and stability condition

3.1. Staggered-grid finite difference scheme

In a staggered-grid scheme (Graves, 1996), the particle velocities,
solid stress and fluid pressure are defined on different grid points,
which can be represented by (vx)i,j,kn , (wx)i,j,kn , vy
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spatial indices, the superscripts are the time indices. For example, with
a grid spacing of h and a time step of τ, the expression (vx)i,j,kn represents
the x component of the solid particle velocity evaluated at point [x= ih,
y = jh, z = kh] and time t = nτ.

The 2Mth ‐ order staggered-grid finite difference scheme (Dong
et al., 2000) for the first-order derivative with respect to space variable
x can be written as

∂ f
∂x ¼ 1

h

XM
m¼1

am f xþ h
2

2m−1ð Þ
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− f x− h
2
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þ Ο h2M
� 	

; ð4Þ

where fmay be particle velocity, solid stress or fluid pressure; am (m=
1, 2, …, M) are the staggered-grid finite difference coefficients.

Fig. 1.Dispersion curves of (a) slow Pwave, (b) S wave, (c) fast P wave at different propagation angles of a planewave. τ=0.5ms, h=5m,M=2, vsP= 1180m/s, vS = 1790m/s, vfP=
3210 m/s.
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