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Laplace-domainmodeling plays an important role in Laplace-domain fullwaveform inversion. In order to provide
efficient numerical schemes for Laplace-domain modeling, two 9-point schemes for Laplace-domain 2D scalar
equation are compared in this paper. Compared to thefinite-element 9-point scheme, the average-derivative op-
timal 9-point scheme reduces the number of grid points per pseudo-wavelength from 16 to 4 for equal direction-
al sampling intervals. For unequal directional sampling intervals, the average-derivative optimal 9-point scheme
reduces the number of grid points per pseudo-wavelength from 13 to 4. Numerical experiments demonstrate
that the average-derivative optimal 9-point scheme is more accurate than the finite-element 9-point scheme
for the same sampling intervals. By using smaller sampling intervals, the finite-element 9-point scheme can ap-
proach the accuracy of the average-derivative optimal 9-point scheme, but the corresponding computational cost
and storage requirement are much higher.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Using the zero frequency component of the damped wavefield,
Laplace-domain full waveform inversion (FWI) can yield a smooth ve-
locity model which can be used as a starting model for subsequent
frequency-domain full waveform inversion (Shin and Cha, 2008). Be-
cause of its less sensitivity to the lack of low-frequency component,
Laplace-domain FWI has been successfully applied to real data (Ha
et al., 2012; Shin et al., 2010). Forward modeling in Laplace-domain is
an essential part of Laplace-domain FWI. Therefore, it is important to
make comparisons between different Laplace-domain schemes and
provide efficient schemes for Laplace-domain FWI.

Laplace-domain schemes can be directly obtained from frequency-
domain schemes. Frequency-domain schemes for 2D scalar wave equa-
tion include the classical 5-point scheme (Pratt and Worthington,
1990), the optimal 9-point scheme for equal directional sampling inter-
vals (Jo et al., 1996; Operto et al., 2007), the average-derivative optimal
scheme (Chen, 2012), and the directional-derivative method (Chen,
2013). However, the dispersion analysis of Laplace-domain schemes is
different from that of frequency-domain schemes. Shin et al. (2002) de-
veloped a method to perform Laplace-domain numerical dispersion
analysis by expressing Laplace-domain dispersion relation as the square
root of the ratio of numerical eigenvalue to analytical eigenvalue. How-
ever, this dispersion relation depends on damping constant, velocity,
and sampling interval as well as propagation angle. Therefore, it is

difficult to draw a general conclusion and to optimize the scheme.
Based on the skin depth in Laplace-domain acoustic wave equation
(Um et al., 2012), Chen (2014) developed a Laplace-domain method
of numerical dispersion analysis by defining a pseudo-wavelength as
2π times the skin depth. The dispersion relation can be expressed as a
normalized attenuation propagation velocity which depends on the
number of grid points per pseudo-wavelength as well as propagation
angle.

In this paper, we use the method in Chen (2014) to make compari-
sons between two 9-point schemes for 2D Laplace-domain scalar
wave equation. In the next section, we will present the Laplace-
domain average-derivative optimal 9-point scheme and the finite-
element 9-point scheme. This is followed by comparisons between the
two schemes in terms of numerical dispersion analysis. Numerical ex-
amples are then presented to demonstrate the theoretical analysis.

2. Two Laplace-domain 9-point schemes

Consider the two-dimensional (2D) scalar wave equation in Laplace
domain (Shin et al., 2002):

∂2P
∂x2

þ ∂2P
∂z2

− s2

v2
P ¼ 0; ð1Þ

where P is the pressure wavefield, the real number s is the Laplace
damping constant, and v(x, z) is the velocity.
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Based on the frequency-domain scheme developed in Chen (2012),
one can obtain an average-derivative 9-point scheme for Eq. (1):
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where
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2
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ePm;nþ j ¼
1−β
2

Pmþ1;nþ j þ βPm;nþ j þ
1−β
2

Pm−1;nþ j; j ¼ 1;0;−1: ð4Þ

Here Pm,n≈ P(mΔx, nΔz), vm,n≈ v(mΔx, nΔz),Δx andΔz are sampling
intervals in x- and z-directions, respectively,α,β, c and d areweighted co-
efficients which should be optimized, and b ¼ 1−c−4d

4 (Chen, 2014).
Based on finite-element formulation, Shin et al. (2002) derived the

following Laplace-domain finite-element 9-point scheme:

1
6

1
Δx2

Pmþ1; n−1−2Pm; n−1 þ Pm−1; n−1

h i

þ2
3

1
Δx2

Pmþ1; n−2Pm; n þ Pm−1; n

h i

þ1
6

1
Δx2

Pmþ1; nþ1−2Pm; nþ1 þ Pm−1; nþ1

h i

þ1
6

1
Δz2

Pm−1; nþ1−2Pm−1; n þ Pm−1; n−1

h i

þ2
3

1
Δz2

Pm; nþ1−2Pm; n þ Pm; n−1

h i

þ1
6

1
Δz2

Pmþ1; nþ1−2Pmþ1; n þ Pmþ1; n−1

h i
− s2

v2m; n
Pm; n ¼ 0:

ð5Þ

Note that the scheme (5) is a special case of the scheme (2). If one
takes α ¼ β ¼ 2

3, c = 1, and d = 0, then the scheme (2) becomes the
scheme (5).

3. Comparison between two 9-point schemes

Consider an attenuating function in the following form

P k; rð Þ ¼ P0e
−kr

; ð6Þ

where r= sin(θ)x+ cos(θ)z, P0 is the amplitude at r=0, θ is the prop-
agation angle, and k is the pseudo-wavenumber.

Substituting Eq. (6) into Eq. (2) and assuming a constant v, one ob-
tains the discrete dispersion relation
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whereVnum ¼ s
k is the numerical propagation velocity of attenuation,G ¼

2π
kΔx is the number of grid point per pseudo-wavelength, and R ¼ Δx

Δz. Here,
we only consider the case when Δx≥ Δz. The case when Δx b Δz can be
discussed similarly (Chen, 2014).

For the scheme (5), its discrete dispersion relation is a special case of
Eq. (7) where α ¼ β ¼ 2

3, c = 1, and d = 0.
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Fig. 1. Normalized numerical attenuation propagation velocity of the finite-element 9-point scheme (5) and the average-derivative optimal 9-point scheme (2) for different propagation
angles for the case when Δx

Δz ¼ 1.
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