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efficient numerical schemes for Laplace-domain modeling, two 9-point schemes for Laplace-domain 2D scalar
equation are compared in this paper. Compared to the finite-element 9-point scheme, the average-derivative op-
timal 9-point scheme reduces the number of grid points per pseudo-wavelength from 16 to 4 for equal direction-
al sampling intervals. For unequal directional sampling intervals, the average-derivative optimal 9-point scheme
reduces the number of grid points per pseudo-wavelength from 13 to 4. Numerical experiments demonstrate
that the average-derivative optimal 9-point scheme is more accurate than the finite-element 9-point scheme
for the same sampling intervals. By using smaller sampling intervals, the finite-element 9-point scheme can ap-
proach the accuracy of the average-derivative optimal 9-point scheme, but the corresponding computational cost
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and storage requirement are much higher.
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1. Introduction

Using the zero frequency component of the damped wavefield,
Laplace-domain full waveform inversion (FWI) can yield a smooth ve-
locity model which can be used as a starting model for subsequent
frequency-domain full waveform inversion (Shin and Cha, 2008). Be-
cause of its less sensitivity to the lack of low-frequency component,
Laplace-domain FWI has been successfully applied to real data (Ha
et al, 2012; Shin et al.,, 2010). Forward modeling in Laplace-domain is
an essential part of Laplace-domain FWI. Therefore, it is important to
make comparisons between different Laplace-domain schemes and
provide efficient schemes for Laplace-domain FWI.

Laplace-domain schemes can be directly obtained from frequency-
domain schemes. Frequency-domain schemes for 2D scalar wave equa-
tion include the classical 5-point scheme (Pratt and Worthington,
1990), the optimal 9-point scheme for equal directional sampling inter-
vals (Jo et al., 1996; Operto et al., 2007), the average-derivative optimal
scheme (Chen, 2012), and the directional-derivative method (Chen,
2013). However, the dispersion analysis of Laplace-domain schemes is
different from that of frequency-domain schemes. Shin et al. (2002) de-
veloped a method to perform Laplace-domain numerical dispersion
analysis by expressing Laplace-domain dispersion relation as the square
root of the ratio of numerical eigenvalue to analytical eigenvalue. How-
ever, this dispersion relation depends on damping constant, velocity,
and sampling interval as well as propagation angle. Therefore, it is
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difficult to draw a general conclusion and to optimize the scheme.
Based on the skin depth in Laplace-domain acoustic wave equation
(Um et al., 2012), Chen (2014) developed a Laplace-domain method
of numerical dispersion analysis by defining a pseudo-wavelength as
2m times the skin depth. The dispersion relation can be expressed as a
normalized attenuation propagation velocity which depends on the
number of grid points per pseudo-wavelength as well as propagation
angle.

In this paper, we use the method in Chen (2014) to make compari-
sons between two 9-point schemes for 2D Laplace-domain scalar
wave equation. In the next section, we will present the Laplace-
domain average-derivative optimal 9-point scheme and the finite-
element 9-point scheme. This is followed by comparisons between the
two schemes in terms of numerical dispersion analysis. Numerical ex-
amples are then presented to demonstrate the theoretical analysis.

2. Two Laplace-domain 9-point schemes

Consider the two-dimensional (2D) scalar wave equation in Laplace
domain (Shin et al,, 2002):
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where P is the pressure wavefield, the real number s is the Laplace
damping constant, and v(x, z) is the velocity.
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Fig. 1. Normalized numerical attenuation propagation velocity of the finite-element 9-point scheme (5) and the average-derivative optimal 9-point scheme (2) for different propagation

angles for the case when 42 = 1.

Based on the frequency-domain scheme developed in Chen (2012),

one can obtain an average-derivative 9-point scheme for Eq. (1):
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Here Py, , = P(MAX, nAz), Vi = v(mAx, nAz), Ax and Az are sampling
intervals in x- and z-directions, respectively, o, 3, c and d are weighted co-
efficients which should be optimized, and b = =<4 (Chen, 2014).

Based on finite-element formulation, Shin et al. (2002) derived the
following Laplace-domain finite-element 9-point scheme:
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Note that the scheme (5) is a special case of the scheme (2). If one
takesa =B =2 c =1, and d = 0, then the scheme (2) becomes the
scheme (5).

3. Comparison between two 9-point schemes

Consider an attenuating function in the following form

P(k,r) = Pye ", (6)

where r = sin(0)x + cos(6)z, Py is the amplitude at r = 0, 6 is the prop-
agation angle, and k is the pseudo-wavenumber.

Substituting Eq. (6) into Eq. (2) and assuming a constant v, one ob-
tains the discrete dispersion relation

Voum G |A
v 2nVPB (7)

where

A= {(1 —a) cosh (%) + a] [2 cosh (%) —2]

R {(1 —P) cosh (%) + [5} [2 cosh <w> —2} ,

B=c+2d [cosh(%) + cosh<w>}

21 cos(0) 2msin(6)
+4bcosh( RC )cosh( C ),

whereV,,,, = iis the numerical propagation velocity of attenuation,G =
2 is the number of grid point per pseudo-wavelength, and R = 4% Here,
we only consider the case when Ax > Az. The case when Ax < Az can be
discussed similarly (Chen, 2014).

For the scheme (5), its discrete dispersion relation is a special case of
Eq. (7) whereao =B =%c=1,andd = 0.
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