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Geophysical monitoring through time-lapsed resistivity imaging is investigated to determine detrimental effects
resulting from temporal smear. Temporal smear can be divided intomotion blur and temporal aliasing, withmo-
tion blur attributed to an extended sample integration time relative to the velocity of amoving target, thus giving
rise to reproduced targets that are distorted versions of the real target shape. Aliasing results fromundersampling
across time and may give a discontinuous movement. The degree to which each aspect of smear affects target
properties described by spatial moment analysis depends on the spatial resolution of the imaging method and
the degree towhich temporal degradation is applied. For syntheticmodels with relatively high spatial resolution,
aliasing effects were slight except in cases where the minimal number of snapshots was acquired to understand
the end state condition of the target. Motion blur, on the other hand, had progressive detrimental effects with
each level of additional smearing. For field data acquired during subsurface injection with a lower resolution
array, the damaging effects from motion blur and temporal aliasing were equivalent. Both aspects showed pro-
gressive degeneration of spatial moments with each level of degradation. To combat this problem in the short
term, it is recommended to acquire resistivity data as rapidly as possible and sacrifice some spatial resolution
to enhance temporal resolution. In the future, there may be methods adopted from motion photography to
deblur target motion by using the point spread function. Aliasing, however, can only be solved through continu-
ous sampling.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The electrical resistivity geophysical method is a popular means
by which to remotely monitor hydrogeological changes, owing to
major advances in instrumentation, survey design, and data inversion
techniques (Loke et al., 2013). The temporal variability in resistivity
has been directly linked to changes in moisture content (Michot et al.,
2003), contaminant concentration (Wilkinson et al., 2010), and
temperature-related processes (Hauck, 2002). Quantitatively, the use
of time-lapse resistivity to estimate hydraulic parameters has also
been extensively applied. For the hydraulic parameter estimation pro-
cedure, the subsurface undergoes a significant change by introducing
an electrically conductive tracer at a source (Camporese et al., 2011;
Monego et al., 2010), which is often followed by an extraction at a near-
by sink (e.g., Oldenborger and Routh, 2009; Singha and Gorelick, 2005).
Over this period, a set of snapshots are gathered and processed using
specialized inverse modeling algorithms to reproduce the subsurface
electrical conductivity distribution. In turn, the calculated electrical con-
ductivity is used to estimate the time history of the injected tracer, and

attributes of the reproduced anomaly are compared to attributes from a
separate flow and transport model for parameter estimation. Overall,
the geophysical data and the hydrogeologically-based models tend to
agree with reasonable fidelity. However, several have noted a few
problems of the estimation procedure including mass underestimation
in the electrical conductivity data by up to 75% and inaccuracies in the
location and the degree of spread of the geophysical anomaly (Singha
andGorelick, 2005). Reasons for the underperformance of the resistivity
method have been placed on low or nonuniform spatial resolution,
regularization, and homogenized petrophysical relations.

With the time-lapse resistivity method, a snapshot of the earth is
taken periodically, where each snapshot samples a set of potential
measurements taken from combinations within a network of elec-
trodes. Depending on the size of the network, the sampling time over
which to complete a single snapshot can be significant. Many have
tried to minimize this time to avoid “temporal smear” by either reduc-
ing the total number of samples within a snapshot (e.g., Singha and
Gorelick, 2005; Ward et al., 2010), reducing the size of the network
(Pidlisecky and Knight, 2011; Rucker, 2009), or by developing rapid
acquisition systems (Ogilvy et al., 2009; Rucker et al., 2014). While the
previous studies tackled the problem from the standpoint of acquisition,
several others have tried reducing blur during modeling. Kim et al.
(2009) tracked the measurement time of each data sequence and
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inverted images on a discretized time line. Kuras et al. (2009) used an
approach to reduce temporal smear by reorganizing the measure-
ment sequence to ensure measurements with similar spatial sensi-
tivity were as close together in time as possible. Doetsch et al.
(2012) accommodated temporal smear through spline interpolation
of the potential data to estimate hypothetical values back to a fixed
point in time.

One potential reason for the underperformance of the
hydrogeophysical modeling that has not been given adequate attention
is the effects that arise from temporal smearing. Here, temporal
smearing is separated into two related components that includemotion
blur and temporal aliasing, with motion blur attributed to extended
sampling integration time relative to target velocity and aliasing
resulting from a large time lag between snapshots. To put it in terms
of motion photography, blur results from large exposure times,
whereby the shutter is open too long relative to themotion of the target.
Temporal aliasing is due to a low frame rate and will produce a target
motion that appears discontinuous. Both aspects can affect spatially-
derived geometric attributes as estimated from time-lapse inverse
modeling. In this work we investigate the issue of temporal smear
using both synthetic and field-based resistivity surveys as test cases.
The synthetic test cases use either moving or growing conductive
targets in a homogeneous background. The field based surveys were
conducted during shallow subsurface injections. Spatial moments
were then computed to compare results within each test case. The re-
sults will show the degree to which each aspect of temporal smearing
may give rise to similar observations of inaccurate target reproduction
noted in the earlier references.

2. Monitoring strategies

A great deal of our understanding of subsurface processes, and in
particular those processes that involvemass and energy transport in po-
rous and fracturedmedia, comes from observing them over a finite time
window. The frequency at which observations are conducted, however,
tend not to be linked to a temporal scale related to appreciable changes
for many state variables describing transport. Rather, the frequency of
acquisition is likely conducted ad hoc,with amindset that oversampling
is superior to undersampling and data can simply be filtered or reduced
to better understand their implications. Networks of environmental
sensors deployed to make our observations are now commonly
installed with high frequency acquisition rates to collect moisture,
temperature, pressure, etc., with little to no additional expense over
low frequency equivalents. The only limitations to deployment appear
to be continuous reliable power and data storage. The latter may have
been solved with the advent of an intelligent web of sensors, which
comprise a network of sensor nodes and communications systems
that actively transmit their data to a central server (Delin et al., 2005;
Hart and Martinez, 2006).

Monitoring the subsurface with geophysical methods is more
temporally constrained compared to a network of independent envi-
ronmental sensors. Eachmeasurement from a pair of electrodes is inter-
dependent upon measurement at other electrodes. While geophysical
methods have proven valuable at yielding information regarding
the transient nature of water movement in the subsurface, applying
the techniques can be relatively expensive and unwieldy, reducing the
rate of acquisition to perhaps one or two snapshots over the course of
study relative to hundreds or thousands of snapshots that can be ac-
quired with a sensor. For example, only a few practitioners can dedicate
a direct-current (DC) electrical resistivity system to a single long-term
project and acquire a sufficient temporal perspective to rival its sensor
counterpart (e.g., Calendine et al., 2011; Hilbich et al., 2008; Ogilvy
et al., 2009; Sjödahl et al., 2008; Versteeg et al., 2004). The expense of
dedicated computer hardware, cabling, electrodes, and a processing
hub is arguably 10 to 100 times greater than a datalogger with an
equal number of sensors to electrodes. Yet, in each case cited above,

the geophysical dataset provided a spatially continuous view that
allowed a more complete understanding of subsurface processes than
could have been likely provided by a more sparsely distributed set
of sensors, regardless of sampling frequency. For the remaining
group of geophysicists that cannot dedicate resources for long
periods of time, conducting a monitoring study is often opportunis-
tic. Due to time and cost constraints, the studies may be shortened
or acquired sporadically.

Extensive investigation into applications of resistivitymonitoring for
a large degree of problem types have revealed a broad range ofmonitor-
ing strategies, which have been summarized in Fig. 1. The summary in-
volved defining an order (n) for the approximate number of snapshots
within a study equating to 2n. The timing of acquisition is sometimes
synchronous, where snapshots are planned to a specific event such as
end state capture. Alternatively, acquisition can be more informal and
asynchronous, where data are collected regardless of the condition of
the subsurface. Most surveys involve either orders 0 or 1 and it is very
rare to find an nth order survey (e.g., Rucker et al., 2014). Acquiring
and processing data sufficiently fast have large hardware requirements.
However, processing of an nth order survey would likely not involve
inverse modeling.

Fig. 2 shows graphically the times at which a resistivity snapshot
would likely be acquired for both natural and artificial environmental
stimuli. A natural stimulus including precipitation or diurnal heating
usually has a periodicity in the environmental variable of interest
(e.g., moisture or temperature) and examples are shown formonitoring
applications of orders 0, 2, or n. Notice that if a low number of snapshots
are acquired relatively to the frequency content of the environmental
variable, information will be lost associated with temporal aliasing.
For artificial stimulus, such as a subsurface injection, several strategies
have been used including simple end state capture, semi-continuous,
and continuous acquisition. Together, Figs. 1 and 2 outline a systematic
means of applying geophysical monitoring and a full understanding of
the final monitoring goal may improve survey design and results
while reducing costs. However, as will be demonstrated later, a reduced
survey cost through lower coveragemay increase the uncertainty in the
subsurface properties.

3. Theoretical methodology

The time dependent nature of investigating temporal smearing re-
quired the use of time-lapse electrical resistivity tomography (ERT).
Several have investigated and compared different means by which to
conduct time-lapse ERT (e.g., Hayley et al., 2011; Oldenborger et al.,
2007). Noted advantages for a temporally constrained time-lapse inver-
sion include penalizing differences across multiple models allowing a
smooth transition of target features through time, while also minimiz-
ing artifacts of the background (Hayley et al., 2011). In this work, tem-
porally constrained time-lapse inversion is implemented as described
in Loke et al. (2014a), which is available in the commercial inversion
code RES3DINVx64.

Borrowing from the descriptions in Rucker et al. (2011) and Loke
et al. (2014a), the equation for the constrained optimizationmethod de-
scribes the relationship betweenmodel parameters andmeasured data.
Here, the model parameters in vector r are the electrical resistivity
values at each discretized cell within the model domain. Given the
large range over which electrical resistivity may vary and the nonphys-
ical meaning of most negative electrical resistivity, r usually represents
the logarithm of the model resistivity values. The optimization proce-
dure marches along a piece-wise linear path on the error surface using
a model updating procedure to calculate a Δri at iteration i using infor-
mation about ri − 1 and the sensitivity matrix, J, containing the partial
derivative of data measurements relative to the model parameters. To
dampen the effects of noise being amplified through the modeling
procedure, various matrix roughness filters in time (M) and space
(W), as well as data and model weighting matrices Rd and Rm,
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