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De-noising erratic and noisy seismic records is one of the crucial issues in seismic data processing. The presence of
colored noise significantly distorts the real signal amplitude leading tomisleading results. We present here, a new
algorithm based on the Factorized Hankel Optimization method, which is robust in dealing with the above
problem. The method involves following two steps: (i) factorization of Hankel matrix and (ii) transformation of
trajectory matrix to optimize the noise in singular spectral domain. Initially, we tested the performance of the
new algorithm on complex synthetic data and then applied to the real seismic reflection data recorded from the
Singareni coalfield, India. The underlying scheme is fast and effective in denoising the complex erratic–noisy
seismic signals. We have also compared the robustness of factorization and optimization techniques with respect
to conventional singular spectral analysis (SSA). The coal beds and faulted structures identified in the actual
seismic reflection data using the new algorithm correlate well with the regional geological structures.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Denoising field seismic records is critical to seismic data processing.
Suppression of random and coherent seismic noise in frequency or
wave number domain has been practiced inquisitively for the long
time. The dynamics of the pure signal can be properly identified from
the random noise background using Eigen estimates (vectors and
values) of the data. However, the colored noise in the data significantly
deviates the variance of Eigen components (Allen and Smith, 1997).

Singular spectral analysis (SSA) is one of the efficient time series an-
alyzing tools, which has invariably been employed to various kinds of
complex geophysical and astronomical problems (Golyandina et al.,
2001; Vautard et al., 1992). The proficiency of the methods has been
vigorously exploited for principle component analysis (Serita et al.,
2005; Tiwari and Rajesh, 2014, Tiwari et al., 2014), reconstruction of
missing data and noise suppression in frequency domain (Oropeza
and Sacchi, 2011) and prediction of evolutionary time series. The under-
lying method uses the singular value decomposition scheme for com-
puting eigenvalues and eigenvectors from the trajectory or Hankel
matrix of the data. The computational cost of the singular value decom-
position (SVD) scheme for lengthy data sets in the form of large Hankel
matrix has become one of the major problems that limit the applicabil-
ity of SSA technique.

Recently some researchers (Rahim and Zokaei, 2011; Xu and Qiao,
2008) have devised a method to reduce the floating point operations
(FLOPS) in SVD computation of square Hankel matrix and thereby
attempted to reduce the computational cost (compared to the classical
O(n3) method). We developed here an alternative “skilled algorithm”

based on factorization of Hankel matrix along the diagonal to reduce
thefloating point operations in SVD process by exploiting the symmetry
property of Hankel matrix. In the proposed scheme the underlying
process reduces the FLOPS from O (m × n2) to d × O ((m/d) ×
((n + d)/d) 2). Here m × n is the size of the Hankel matrix (m b n)
and d is the number of factor segments.

2. Methodology

In geophysical field observation, the noise is an additive component
to pure signal. More generally the field data can be represented as
follows.

Data Dð Þ ¼ Signal Sð Þ þNoise Nð Þ: ð1Þ

In a mathematical notation the expectation value of the data can be
written as follows

E TDð Þ ¼ E TSð Þ þ E TNð Þ ð2Þ

where, TD, TS and TN represent respectively trajectory matrix of the
observed data, pure signal and noise.
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For nonrandom noise process,

E TNð Þ≠σ2I: ð3Þ

The random noise perturbs the real expectation values of the signal
only along the diagonal which can be annulled by scaling. However,
scaling doesn't work for the estimation of the expectation values of
pure signal in the presence of colored noise. The estimate of the Eigen
vectors and Eigen values of the observed data matrix (with colored
noise) significantly differs from that of the pure signal. The transforma-
tion of the observed data trajectory matrix using the Eigen values and
Eigen vectors of noise trajectory matrix would allow us to distinguish
the actual signal (Allen and Smith, 1997). A fast and robust algorithm
based on factorization Hankel matrix and optimization process would
help effectively to reduce the erratic and colored noise from seismic re-
flection data.

Our methodology comprises the following five steps namely
(i) formulation and factorization of trajectorymatrix (ii) transformation
of each factor using the Eigen vectors and values of estimated noise tra-
jectory matrix (iii) SVD, grouping and reconstruction of each factor of
trajectory matrix (iv) inverse transformation of all the reconstructed
trajectorymatrices and (v) diagonal averaging of each trajectory matrix
and reconstruction of denoised data series. These steps are explained
mathematically in detail as follows:
Step (i) We begin with the formulation of trajectory matrix of size

L × (N − L + 1) from the observed data series Y(x) =
{y(x1), y(x2), y(xN)} using an appropriate window length
(L) using

TL�K ¼ X1:… : XK½ � ð4Þ

where Xi indicates the vector of length L, where K = N −
L + 1, and N represents the length of the series. The trans-
formed trajectory Hankel matrix is systematically factorized
into number of square or rectangularmatrices along the diag-
onal as shown in Fig. 1.

Step (ii) Following Allen and Smith, 1997, we define signal to noise
ratio or more precisely signal to noise variance ratio (ρ) in

terms of data and noise trajectory matrices as ρ≡ eT �TD �e
eT �TN �e

,

where e is the vector and define the state space direction
and eT is its transpose. In the data space, the dynamical be-
havior of the systemcan beunderstood from the eigenvectors
which are also known as state space vector and define the
direction of the data space. From a predefined estimate of ρ,
the noise trajectory matrix TN can be obtained using the ei-
genvectors of the observed data trajectory matrix. Next
using the Eigen vector andEigen values of the noise trajectory
matrix, the observed data can be transformed using the fol-
lowing equation

U;λ;V½ � ¼ SVD COV TNð Þð Þ ð5Þ

whereU andV are respectively the left and right eigenvectors
andλ is the eigenvaluematrix of the covariance (COV) trajec-
torymatrix. The transformed trajectorymatrix, say TD′ can be
given by

T0
D ¼ λ1=2 � UT � TD � U � λ−1=2

: ð6Þ

Step (iii) Then we apply SVD, grouping and reconstruction processes
on each factor of the transformed trajectory matrix.
a) Singular value decomposition (SVD): Here, we decompose

the factors of the transformed trajectory matrix (TD′) into
eigenvectors and eigenvalues as follows

SVD T0
D

� � ¼ Ui

ffiffiffiffiffi
λi

p
Vi

h i
: ð7Þ

The group of ith eigenvectors and eigenvalue i.e., (√λi,
Ui, Vi) is called the eigentriple.
Hence p eigentriples for non-zero eigenvalues, the trans-
formed factor trajectory matrix TD′ can be given by
(Golyandina and Zhigljavsky, 2013)

T0
D ¼

Xp

j¼1

√λi jUi jV
T
i j: ð8Þ

b) Grouping: Accordingly the significant eigentriples are
identified on the basis of periodicity and variance

Fig. 1. An example of two step factorization of Hankel matrix of size 9 × 10 into factor
matrices A (size 5 × 6) and B (size 4 × 5).
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Fig. 2. Complex chaotic signal (red color solid line) alongwith its first principle component reconstructed using classical SSA (blue color dotted linewith circlemarker) and FHSSA (green
color dotted line with diamond marker).
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