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The Hilbert–Huang transform (HHT) includes two procedures. First, empirical mode decomposition (EMD) is
used to decompose signals into several intrinsic mode functions (IMFs) before the Hilbert transform (HT) of
these IMFs are calculated. Compared to the conventional Hilbert transform (HT), HHT is more sensitive to thick-
ness variations of seismic beds. However, random noise in seismic signal may cause the mixture of the modes
from HHT. The recent ensemble empirical mode decomposition (EEMD) presents the advantages in decreasing
mode mixture and has the promising potential in seismic signal analysis. Currently, EEMD is mainly used in
seismic spectral decomposition and noise attenuation. We extend the application of EEMD based instantaneous
frequency to the analysis of bed thickness. The tests on complexMarmousi2model and a 2D field data show that
EEMD is more effective in weakening mode mixtures contained in the IMFs, compared with that calculated by
EMD. Furthermore, the EEMD based instantaneous frequency ismore sensitive to the seismic thickness variation
than that based on EMD andmore consistent with the stratigraphic structure, whichmeans that E-IFPs are more
advantageous in characterizing reservoirs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The instantaneous attributes extracted from seismic data, especially
the instantaneous frequency (noted as IFP), are generally used in
seismic stratigraphic interpretation, including structure, lithology,
thickness of stratum medium and so on. The most common method to
estimate the instantaneous attributes is based on Hilbert transform pre-
sented by Taner et al. (1979). Instantaneous frequency based on Hilbert
transform can be applied only on signals with special monocomponent
because it is mathematically defined as the derivative of phase with re-
spect to time (Boashash, 1992; Cohen, 1995). However, seismic signals
are nonlinear and non-stationary generally, which may lead to the lack
of physical significance of the instantaneous frequency estimated by
Hilbert transform. Taking the physical implementations and a local
restriction condition definition on the signals into account, empirical
mode decomposition (EMD) and Hilbert–Huang transform (HHT) are
proposed (Huang et al., 1998). Firstly, EMD is utilized to decompose a
signal into a series of intrinsic mode functions (IMFs) that meet the re-
quirement in estimating instantaneous frequency by Hilbert transform

and then Hilbert transform is performed on these IMFs. It is proved
that HHT is more applicable to nonlinear and non-stationary signals.
Currently the application of EMD in signal processing is mainly utilized
in noise attenuation (Bekara and van der Baan, 2009; Chang, 2010),
EMD as a filter bank (Flandrin et al., 2004) and so on. In seismic
exploration, EMD and Hilbert–Huang transform (HHT) are adopted to
estimate instantaneous frequency and time-frequency attributes of
seismic data (Han and van der Baan, 2011; Magrin-Chagnolleau and
Baraniuk, 1999; Zhou et al., 2012). The published examples have dem-
onstrated their effectiveness. However, one of the major drawbacks of
EMD is the mode mixing problem (Wu and Huang, 2009), which
means that either a single IMF consists of signals in widely disparate
scales, or very similar oscillations reside in different IMF components.
This phenomenon is usually the consequence of signal intermittency
(Wu and Huang, 2009). The decomposition process in EMD shows
that mode mixing is related to the sifting process that is used to obtain
the mean of the envelope. The extraction of the envelope depends on
the extreme points of target signals and their distribution. If the signal
is intermittent, the value of extreme points is a catastrophe and their
distribution is abnormal. To guarantee the smoothness of envelope,
the envelope is inevitably distorted because of interpolation, causing
the envelope to overshoot or undershoot at the signal intermittency
and that mode mixing exists in obtained IMFs.

Aiming at the mode mixing, ensemble empirical mode decomposi-
tion (EEMD) was proposed (Wu and Huang, 2009), where the final
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IMF components are defined as the mean of all the ensemble trials.
Its basic idea is that EEMD is employed to adaptively decompose a
signal with extra white noise into a series of intrinsic mode functions
with narrow-band characteristic and then Hilbert transform is ap-
plied to these IMFs. The examples have shown that the mode mixing
can be decreased effectively by considering additional white noise to
the signal.

Currently EEMD is utilized in the estimation of Hilbert-spectrum
(Song et al., 2012) and fault diagnosis (Lei et al., 2009) and so on. The
published examples have demonstrated their effectiveness. The new
complete EEMD (CEEMD) presented a better spectral separation of
modes (Torres et al., 2011). Also, the examples showed that CEEMD
have the advantages of fewer sifting iterations and lower computational
cost. Further, CEEMD is employed in seismic signal spectral decomposi-
tion and higher spectral–spatial resolution of time–frequency distribu-
tion is demonstrated (Han and van der Baan, 2012). Inspired by EMD,
a new adaptive data analysis method is addressed to extract the instan-
taneous frequency of nonlinear and non-stationary data (Hou and Shi,
2013).

In this paper, by comparing the decomposed IMFs and correspond-
ing instantaneous frequency based on EMD with that based on EEMD
respectively, we present our new insights into the induced mode
mixing problem and the improved instantaneous attribute analysis of
seismic signal based on EEMD, by analyzing seismic reflection data.
The rest of this paper is arranged as follows: the algorithms of EEMD
and instantaneous frequency are described in Section 2. In Section 3,
we respectively apply EMD and EEMD to the migration data of
Marmousi2 model. Themodemixing and its influence on the estimated
instantaneous frequency are studied and the advantageous EEMDbased
instantaneous frequency is showed. In order to further prove the effec-
tiveness of EEMD and corresponding instantaneous frequency, a 2D
field seismic data is analyzed in Section 4. Section 5 presents conclusion
and discussion.

2. Instantaneous frequency based on EEMD

2.1. Ensemble empirical mode decomposition (EEMD)

As a noise-assist data analysis method, EEMD is proposed to solve
the mode mixing problem (Wu and Huang, 2009), where EMD is
performed on an ensemble of the signal with additional white noise
rather than the original signal. Then the EMD is applied to the noisy
data to obtain the IMFs. In order tomake the addedwhite noiseweaken,
the process described above is repeated N times and then the final IMFs
are obtained by averaging all the noisy IMFs in the same level.

The main idea of EEMD is to take advantage of the statistical charac-
teristics of white noise and add white noise into the original signal with
many trials. If the addedwhite noise level is close to the actual level and
also the number of trials is sufficient, more accurate decomposition
results can be obtained by EEMD. The algorithm for EEMD contains
the following steps (Wu and Huang, 2009):

Step 1: For a given original signal x(t) and awhite noisewi(t) set to it,
we constitute a new signal yi(t)

yi tð Þ ¼ x tð Þ þ εwi tð Þ; i ¼ 1; ⋯;N; ð1Þ

where imeans the ith trial and N is the number of the trials. wi(t) is
the added white noise with normal distribution, whose mean value
is 0 and variance is 1.0. We assume that wi(t) in each trial is statisti-
cally independent, and ε is the standard deviation of white noise.
Step 2: For the ith trial, applying the EMD to the noisy signal yi(t) to
obtain the IMFs noted as cij(t), j=1, ⋯, K, where j is the order of IMF
and K is the mode number.
Step 3: Repeating step 1 and step 2 N times.

Step 4: To weaken the added noise, the average of the decomposed
IMFs with the same order is defined as the final output IMFs cj′(t)

c0j tð Þ ¼ 1
N

XN
i¼1

ci j tð Þ; j ¼ 1; ⋯;K; ð2Þ

where the IMFs are based on EEMD and noted as E-IMFs. Then the
original signal can be expressed as

x tð Þ ¼
XK
j¼1

c0j tð Þ þ rK tð Þ; ð3Þ

where rK(t) is the residue. In this paper, considering the computa-
tional efficiency and variance of white noise, we set N greater
than 100 and K greater than 2. In addition, only the first and second
E-IMFs are considered.

According to the procedure of EEMD and the algorithm in EMD,
E-IMFs are the decomposition of the original signal. The first E-IMF
c1′1(t) contains the highest frequency components of signal, and the
final E-IMF cK′(t) contains the lowest frequency components. Unlike
Fourier transform and wavelet transformwhere a predetermined spec-
tral basis is defined, EEMD and EMD depend on the characteristic of the
original signal in time domain directly, which are data-adaptive.We de-
fine IMFj ( j=1, ⋯, K) as the intrinsic mode function cj(t) based on EMD
to simplify the notation. In the same way, E ‐ IMFj ( j= 1, ⋯, K) is set as
EEMD based intrinsic mode function cj′(t).
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Fig. 1. Marmousi2 model: (a) the P-wave velocity; (b) wave-equation pre-stack
depth-migration data.
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