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We introduce a new method to include structural orientation constraints into potential field inversion using a
stochastic framework. The method considers known geological interfaces and planar orientation data such as
stratification estimated from seismic surveys or drill hole information.
Integrating prior geological information into inversionmethods can effectively reduce ambiguity and improve in-
version results.
The presented approach uses cokriging prediction with derivatives. The method is applied to two synthetic
models to demonstrate its suitability for 3D inversion of potential field data. The method is also applied to the
inversion of gravity data collected over the Lalor volcanogenicmassive sulfide deposit at SnowLake, CentralMan-
itoba, Canada. The results show that using a structurally-constrained inversion leads to a better-resolved solution.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A variety of techniques have been utilized to invert potential field
data (Oldenburg and Pratt, 2007). In most inversion applications, the
problems are underdetermined and have non-unique solutions,
i.e., there are an infinite number of models that can reproduce the geo-
physical observations. The purpose of any well-founded inversion
method is to provide a model that is consistent with all the available
geophysical, petrophysical and geological information. Many strategies
can be used to deal with the non-uniqueness problem in gravity and
magnetic inversion. They all involve constraints or regularization in
order to limit the resulting solution space.

In a deterministic framework, Li and Oldenburg (2000) and Lelièvre
and Oldenburg (2009) investigated options for incorporating structural
orientation data into underdetermined inversions by minimization of
an objective function. Barbosa and Silva (2006) introduced a technique
in a user-friendly environment for helping forward modeling and test-
ing geological hypotheses. Fullagar et al. (2008) applied an adaptive
mesh for inversion of potential field anomalies. The method has the
benefit of both reducing the size of the inversion problem and also in-
corporating geologic boundary information into the inversion.

Stochastic inversion methods (e.g., Eidsvik et al., 2004; Franklin,
1970; Mosegaard and Tarantola, 1995; Tarantola, 2005) have proven
useful for many inversion problems. Bosch and McGaughey (2001),

Calcagno et al. (2008) andGuillen et al. (2008) introduce a stochastic in-
version framework that attempts to directly recover rock types. For
these inversion methods known as lithological inversions, the model
space is explored through a random walk process (Mosegaard and
Tarantola, 1995). The advantage of these methods is that they allow
us to assess model uncertainty but at a heavy computational cost.

Herein, we propose a stochastic inversion method that integrates
structural orientation data (i.e. strike, dip) into the inversion process.
One of the stochastic methods that has been applied in the inversion
of geophysical data is the geostatistical approach. The geostatistical ap-
proach has been successfully applied by Dong (1990), Haas andDubrule
(1994), Torres-Verdin et al. (1999), Chasseriau and Chouteau (2003),
Gloaguen et al. (2005), Hansen et al. (2006), and Giroux et al. (2007).
Shamsipour et al. (2010, 2011b, 2012) presented a geostatistical frame-
work to use cokriging and conditional simulation for gravity, magnetic
and joint 3D inversion of potential field data.

Most of the geostatistical methods are established on the stationary
assumption. However, Shamsipour et al. (2013) introduced amethod of
inversion based on a geostatistical approach using non-stationary co-
variances. They succeeded in adding structural orientations by adjusting
different variograms for segmentswith different structural orientations.
To include a variable structure we propose to augment the inversion
using cokriging with gradient information derived from ancillary geo-
logical or geophysical data, such as 3D seismic surveys. The approach
is inspired by the work of Lajaunie et al. (1997) and Chilès and
Delfiner (2012) who in the implicit modeling of geological surfaces by
interpolation, added gradient data to the co-kriging system, which
they named the potential-field interpolationmethod. The paper is orga-
nized as follows: first, we show how gradient constraints can be
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incorporated in the geostatistical prediction. Thenwe review the formu-
lation of the inverse problem as a linear cokriging system and expand
this formulation to include gradient constraints from structural orienta-
tion data. Then, applications of the inversion algorithm on synthetic ex-
amples are presented to demonstrate the effectiveness of including
gradient constraints in the inversion. Thereafter we present and discuss
results from the application of the constrained inversion method on a
multi-parameter geophysical survey (i.e. gravity and 3D seismic data)
acquired over the Lalor massive sulfide deposit in Central Manitoba,
Canada. Then the applicability of ourmethod is discussed beforewe fin-
ish with conclusions.

2. Theory

In this section, we first explain cokriging prediction with derivatives
and then in the next section, we extend this approach to linear stochas-
tic inversion. Cokriging (Chilès and Delfiner, 2012) is a stochastic inter-
polation and extrapolation tool to improve the prediction of a primary
variable at unsampled locations using the spatial correlation between
secondary variables and the primary variable. Suppose that we want
to predict the primary variable Z1(x0) from realizations of secondary
random functions Zi(xα) known over sample sets Si = {xα : Zi(xα)
known}. We can write the cokriging prediction (Chilès and Delfiner,
2012) as

Ẑ ¼
X
i

X
α∈Si

λiαZi xαð Þ ð1Þ

where xα is used for generic data points, but the sample sets Si are in
general different for different indices representing primary and second-
ary variables.

Now suppose that we consider prediction of the primary variable
using its derivatives. In this case the cokriging formula can bewritten as

Ẑ ¼
X
xα∈S1

λ1αZ xαð Þ þ
X
xβ∈S2

λ2β
∂Z
∂uβ

xβ
� �

þ
X
xβ∈S3

λ3β
∂Z
∂vβ

xβ
� �

þ
X
xβ∈S4

λ4β
∂Z
∂wβ

xβ
� �

ð2Þ

where u, v andw are the directional derivatives and xβ is the secondary
variable. Normally, u, v and w are the directions of the coordinate axes.
For simplicity, we replace

∂Z
∂x xið Þ ¼ Gx

i ;

∂Z
∂y xið Þ ¼ Gy

i ;

∂Z
∂z xið Þ ¼ Gz

i :

In order to solve the cokriging system, we need all the covariances
and cross-covariances involved in the above system. They can all be
expressed based on CZZ, the auto-covariance of Z. Assume there are
two locations xa and xb and define h = (hx, hy) = xa − xb and r = |h|,
then the required covariances can be written as (Blanc-Lapierre and
Fortet, 1953; Chilès and Delfiner, 2012)

CZGx xa; xbð Þ ¼ Cov Z xað Þ; Z0
x xbð Þ� � ¼ hx

r
C0
ZZ ð3Þ

CGxGy xa; xbð Þ ¼ Cov Z0
x xað Þ; Z0

y xbð Þ
� �

¼ hxhy
r2

1
r
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ZZ−C″

ZZ

� �
ð4Þ

CGxGx xa; xbð Þ ¼ Cov Z0
x xað Þ; Z0
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−1
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 !
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ZZ−
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r

� �2
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ZZ ð5Þ

where Z′ and C′ are the first derivative of the random function and the
auto-covariance respectively. The second derivative of the auto-
covariance is shown by C″. We have to mention here that common
variogram functions such as the spherical, the exponential and the line-
ar models are not differentiable. This is because of their singularity at
the origin. In such cases, a differentiable variogram such as a Cauchy
gravimetric and cubic is preferred.

From a mathematical point of view a derivative is point support in-
formation, however in reality the information used for geological imag-
ing is not a point derivative but rather a gradient defined over a finite
support. Renard and Ruffo (1993) modeled the derivative information
using a Gaussian weighting function with main axis lengths, which
these axes can be set randomwith reasonable values. In the next section
we will explain another method to model derivative information by fi-
nite increments. In this method the derivative information is not a
point derivative but rather an average over some support.

2.1. Point pairs method

Themethod of point pairs represents the gradient of a random func-
tion by a pair of points (Delhomme, 1979).We use point pairs xβ (defin-
ing zero gradients) as a secondary variable in the prediction to
incorporate structural geologic constraints in the cokriging system.
Note that these point pairs define gradients but not the values them-
selves. The cokriging system can now be written as (Chilès and
Delfiner, 2012)

Ẑ ¼
X
α

λ1αZ xαð Þ þ
X
β

λ2β Z xβ þ huβ

� �
−Z xβ−huβ

� �h i
ð6Þ

where u is the unit vector, u ∈ Rn, and h is the distance. It should be
noted, in cases where the difference in values over point pairs is zero,
the contribution of the second term in Eq. (6) is not zero (Brochu and
Marcotte, 2003; Chilès and Delfiner, 2012). Hence, the weights (λ1α)
are different when we use kriging based on the Z(xα) (physical proper-
ties) alone, even though the contribution of the increment data vanishes
in the kriging result, their information contributes to the final estimate
because they are taken into account by the kriging equations.

Chilès and Delfiner (2012) reported that the pair point distances
should be equal to the grid cell width to obtain adequate and robust re-
sults. The selected pair points must not be located too close to each
other or adjacent to existing observations to prevent numerical instabil-
ity in the cokriging system.

Lajaunie et al. (1997) applied the same method to interpolate geo-
logical interfaces in the presence of orientation data. The method as-
sumes that geological interfaces are iso-surfaces of a scalar 3D
potentialfield. In their study they used three different types of data: gra-
dient data, data on tangents and increments. Theirmethod has no direct
measurement of the random function and themajor drawback is to pre-
dict the covariance model.

3. Inversion

Shamsipour et al. (2010) presented a stochastic framework for the
inversion of potential field data using cokriging. This method can be ap-
plied to any linear geophysical case. Consider that there are n data ob-
servations, d, and m parameters (physical properties of rectangular
prisms) p, their relationship can be written in a matrix form:

dn�1 ¼ An�mpm�1 ð7Þ
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