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We propose a 3-D Fresnel-wavepath tomography based on simultaneous iterative reconstruction technique
(SIRT)with adaptive relaxation factors, in order to obtain effective near-surface velocity models for static correc-
tions. We derived a formula to calculate the optimal relaxation factor for tomographic inversion to increase the
convergence rate and thus the efficiency of the Fresnel-wavepath tomography. A forwardmethod based on bilin-
ear traveltime interpolation and the wavefront groupmarching is applied to achieve fast and accurate computa-
tion of the wavefront traveltimes in 3-D heterogeneous models. The newmethod is able to achieve near-surface
velocity models effective in estimating long-period static corrections, and the remaining traveltime residuals
after the tomographic inversion are used to estimate the short-period static corrections via a surface-
consistent decomposition. The new method is tested using 3-D synthetic data and 3-D field dataset acquired in
a complex mountainous area in southwestern China.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Statics of seismic data refer to distortions in the arrival time of
recorded seismic waves due to near-surface complexities such as
variations in elevation and the thickness of the low-velocityweathering
layers. Statics have been recognized as a major source of risk for land
seismic exploration (e.g., Cox, 1999), particular in desert andmountain-
ous areas. The long-wavelength variations of statics distort the structur-
al timing of reflection events in seismic imageries, while the short-
period variations in statics degrade the continuity of stacked events. In
traditional seismic data processing, the long-period static corrections
are estimated using near surface velocity models based on first arrivals.
After correcting the long-period statics, the short-period (residual)
statics are estimated by cross-correlating the neighboring traces on
CMP gathers and stack sections.

Since 1990s first-arrival traveltime tomographyhas been recognized
as an effective way to estimate near-surface velocitymodels and associ-
ated static corrections, though it has to dealwithmany challenges espe-
cially since seismic inversion is intrinsically an ill-posed problem
(e.g., Chang et al., 2002; Stefani, 1995; Zhou and Li, 2012; Zhu et al.,
1992). One limitation of the first-arrival traveltime inversion is the
high-frequency ray theory assumption that the traveltime of first arrival
is a line integral of the slowness along the raypath between the source
and receiver. However, rays are deflected around low velocity

anomalies, resulting in a biased sampling of high velocity regions. To re-
duce this bias, wemay use the Fresnel volume to represent the path of a
seismic wave at a specific frequency, equivalent of the first Fresnel zone
in which constructive interference of seismic energy takes place
(Cerveny and Soares, 1992; Husen and Kissling, 2001). A traveltime
observed at a receiver contains the propagation information of seismic
wave in the Fresnel volume. A wave of seismic bandwidth can be more
realistically represented by a Fresnel volume than a ray of zero volume.

Several geophysicists used Fresnel volume rays or fat rays in the seis-
mic traveltime tomography. Zhou (1994) and Vasco et al. (1995) pro-
posed Fresnel volume tomography, assuming that traveltime is a
weighted volume integral over the earth's velocity field. They calculated
the Fresnel volume based on paraxial ray approximation. Wang and
Zhou (1997) compared Fresnel volume tomography with conventional
ray tomographyusing 2-D synthetic traveltimes.Watanabe et al. (1999)
applied the Fresnel volume to represent wave propagation in an exper-
iment of 3-D synthetic traveltime tomography. They proposed a numer-
ical definition of Fresnel volumes, characterized by aweighting function
in terms of the definition of the first Fresnel zone. Husen and Kissling
(2001) presented a local earthquake tomography using fat ray. Their
synthetic tests showed that fat ray tomography yields significantly bet-
ter inversion results than conventional ray tomography. Grandjean and
Sage (2004) presented 2-D seismic tomography software based on
Fresnel wavepaths and a probabilistic reconstruction. The software
yielded a higher resolution velocity model from 2-D synthetic borehole
traveltime data. Xu et al. (2006) used reflection fat rays to enhance the
resolution of 3-D velocitymodel for migration imaging. Liu et al. (2009)

Journal of Applied Geophysics 111 (2014) 242–249

⁎ Corresponding author. Tel.: +86 532 66782551.
E-mail address: zhangjz@ouc.edu.cn (J. Zhang).

http://dx.doi.org/10.1016/j.jappgeo.2014.10.006
0926-9851/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Journal of Applied Geophysics

j ourna l homepage: www.e lsev ie r .com/ locate / j appgeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jappgeo.2014.10.006&domain=pdf
http://dx.doi.org/10.1016/j.jappgeo.2014.10.006
mailto:zhangjz@ouc.edu.cn
http://dx.doi.org/10.1016/j.jappgeo.2014.10.006
http://www.sciencedirect.com/science/journal/09269851


proposed the sensitivity kernels for Fresnel volume tomography and
concluded that it is practical to replace the band-limited sensitivity
kernel with a few selected frequencies or even the single dominant
frequency for Fresnel volume tomography. Mendes (2009) combined
Monte-Carlo optimization with simultaneous iterative reconstruction
technique (SIRT) for Fresnel volume tomographic inversion. Gance
et al. (2012) applied a high-resolution tomography of first-arrival
traveltimes using Fresnel wavepaths to characterize subsurface of land-
slides. We also introduced Fresnel volume ray into the first-arrival
tomography for building near-surface velocity models (Ke et al., 2007;
Zhang, 2009).

We propose a SIRT-based, modified Fresnel-wavepath tomographic
method. Several published Fresnel-wavepath tomographic studies are
based on SIRT inversion (e.g. Grandjean and Sage, 2004; Mendes,
2009; Watanabe et al., 1999; Zhang, 2009). SIRT is a very suitable
technique for inverting large sparse linear systems. It treats one
equation at a time, hence avoids the storage of the entire inversion
kernel matrix in RAMmemory. A parallel algorithm of seismic tomogra-
phy can be easily implemented based on SIRT. However, SIRT-type
algorithms always have a slow convergence. Sometimes a relaxation
factor is necessary to speed up the convergence, though it is often
given empirically.

In this paper, an optimal relaxation factor is estimated automatically
at each iteration step to speed up the convergence of the inversion.
Based on bilinear traveltime interpolation and wavefront group
marching, our fast and accurate 3-D traveltime computation method
(Zhang et al., 2011) is adopted into the Fresnel-wavepath tomography.
We applied the Fresnel-wavepath tomography to build the near-surface
velocity model using first-arrival traveltimes in a mountainous area in
southwestern China. The velocity model was used to estimate the
long-period static corrections, and the traveltime residuals of the final
tomographic velocity model were used to estimate the short-period
static corrections. The stacked section after the long- and short-period
static corrections shows a significant increase in the continuity of the
reflectors, indicating an increase in the reliability of the seismic profile
for interpretation.

2. Fresnel-wavepath representation

According to Cerveny and Soares (1992), the Fresnel volume for a
pair of source s and receiver r is the region defined by

Δtp ¼ tsp þ trp−tsr≤T=2; ð1Þ

where tspdenotes the traveltime from s to a variable scatteringpointp in
space, trp denotes the traveltime from p to r, tsr is the minimum
traveltime from s to r, and T is the dominant period of the seismic
wave. The dominant frequency will be used for band-limited data. The
Fresnel volume becomes wider for lower frequencies and narrower for
higher frequencies.

To implement the traveltime computation and tomography, a
velocity model is divided into cells defined by a rectangular grid mesh.
Using the approach of Watanabe et al. (1999), a numerical Fresnel vol-
ume in the discretized model can be represented by weight ωp at each
grid node p,

ωP ¼ 1−2ΔtP=T; 0≤ΔtPbT=2
0; T=2≤ΔtP ;

�
ð2Þ

which varies linearly with respect to Δtp. The weight represents the
probability that a model perturbation delays the seismic wave propaga-
tion from a source to a receiver byΔtp. The value of theweight is 1 along
the central axis of a Fresnel volume (i.e. the high-frequency ray) and 0
on and beyond its boundary. For each source–receiver pair, the portion
of themodel space containing all nodeswith nonzeroweights forms the
Fresnel wavepath. The main computation for determining a numerical

Fresnel-wavepath is to compute the traveltimes from source s to receiv-
er r and each grid node p, and that from receiver r to each grid node p.

3. Traveltime computation

In computing the Fresnel-wavepaths, we need to find thewavefront
traveltimes from every source and receiver to all grid nodes. One of the
most popular methods used to compute advancing wavefronts is the
fast marching method (FMM) (Sethian, 2001). It uses a narrow band
technique and expands the band by selecting only one nodewith amin-
imum traveltime in the narrow band as a new source and readjusting
outward neighbors. Its computational cost is O (NlogN), where N is
the total number of grid nodes in the computational domain. Kim
(2002) introduced an optimal variant of FMM called the group
marching method (GMM). The GMM expands its narrow band by
locating a group of nodes with the traveltimes satisfying certain
conditions (Kim, 2002), while maintaining causality and re-computing
the traveltimes around their neighbors at one time, and thus costs
only O (N).

The traveltime in the FMMandGMM is solved using thefinite differ-
ence of eikonal equation (Kim, 2002; Sethian, 2001), though the accura-
cy of this solution decreases with increasing cell size. To improve the
accuracy of traveltime computation we derived a closed-form expres-
sion to calculate traveltime at an arbitrary point in a hexahedral cell
based on a bilinear interpolation of the known traveltimes over the
grid nodes in the cell (Zhang et al., 2011). This analytical traveltime
solver has a higher accuracy than thefinite difference solution of eikonal
equation. The combination of the GMM and our 3-D analytical
traveltime solver renders a fast and accurate method for traveltime
computation in 3-D complex media. We also extended the method for
models with irregular cell discretization (Huang et al., 2011).

4. Tomographic algorithm

For large-scale 3-D seismic exploration studies, tomographic inver-
sion always solves a large system of linear equations. In order to avoid
the RAM storage of largematrices and to implement a parallel algorithm
of the tomographic inversion, we propose a SIRT-based algorithm for
Fresnel-wavepath tomography. Following the SIRT algorithm revised
by Grandjean and Sage (2004), we propose a set of adaptive relaxation
factors based on the weighting values representing the Fresnel
wavepaths in grid velocitymodels. The Fresnelweighting values are cal-
culated and the velocity values are inverted at grid nodes rather than on
cells. Let sj be the slowness at the jth grid node, ti the traveltime along
the ith Fresnel wavepath, and δti the traveltime residual, the difference
between the observed and calculated traveltimes. According to the SIRT
algorithm (Grandjean and Sage, 2004), the slowness perturbation at
grid node j due to δti can be expressed as

δsi j ¼ s j
δti
ti

: ð3Þ

The slowness perturbations at different grid nodes within a Fresnel-
wavepath may produce different traveltime delays, while the slowness
perturbations at nodes within the Fresnel-wavepath i may differ from
each other. However, Eq. (3) gives the same back-projected value
from δti for all nodes of the Fresnel-wavepath i regardless of the node lo-
cations. Since theweightωp in Eq. (2) accounts for the relative contribu-
tion of slowness perturbation at node p to the traveltime residual of a
Fresnel-wavepath, we define a weight coefficient applied to the slow-
ness perturbation at node j within the Fresnel-wavepath i with
traveltime residual δti as

pi j ¼ ωi j=
1
Ni

XNi

j¼1

ωi j

0
@

1
A; ð4Þ
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