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Manymethods have been used to upward continue potential field data. Most techniques employ the Fast Fourier
transform, which is an accurate, quick way to compute level-to-level upward continuation or spatially varying
scale filters for level-to-draped surfaces. We here propose a new continuation approach based on the
minimum-length solution of the inverse potential field problem, which we call Volume Continuation (VOCO).
For real data the VOCO is obtained as the regularized solution to the Tikhonov problem. We tested our method
on several synthetic examples involving all types of upward continuation and downward continuation (level-
to-level, level-to-draped, draped-to-level, draped-to-draped). We also employed the technique to upward
continue to a constant height (2500 m a.s.l.), the high-resolution draped aeromagnetic data of the Ischia Island
in Southern Italy. We found that, on the average, they are consistent with the aeromagnetic regional data
measured at the same altitude. The main feature of our method is that it does not only provide continued data
over a specified surface, but it yields a volume of upward continuation. For example, the continued data refers
to a volume and thus, any surface may be easily picked up within the volume to get upward continuation to
different surfaces. This approach, based on inversion of the measured data, tends to be especially advantageous
over the classical techniques when dealing with draped-to-level upward continuation. It is also useful to obtain
amore stable downward continuation and to continue noisy data. The inversion procedure involved in themeth-
od implies moderate computational costs, which are well compensated by getting a 3D set of upward continued
data to achieve high quality results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Upward continuation is used to transform anomalies measured at a
surface into anomalies that would bemeasured at some higher altitude
surface. It can also be used to merge data at different altitudes, such as,
e.g., thosemeasured on irregular surfaces (i.e. in case of draped airborne
surveys) and to continue the whole dataset to a given surface
(e.g., Paoletti et al., 2004, 2005; Paterson et al., 1990; Pilkington and
Roest, 1992; Ridsdill-Smith, 2000). This transformation is also helpful
to enhance the effects of deep sources, as it attenuates the highest
frequency content of the signal, which is usually associated to shallow
sources. Finally, multiscale methods such as the continuous wavelet
transform (Fedi and Cascone, 2011; Fedi et al., 2010; Mauri et al.,
2010; Sailhac et al., 2009), the DEXP transformation (Fedi, 2007) and
the multiridge analysis (Cella et al., 2009) involve potential field data
available on a 3D volume, which in turn is generated by upward contin-
uation of data measured at a single – flat or draped – surface.

Upward continuation originates fromGreen's third identity (Blakely,
1996), which states that if U is a harmonic continuous function, with

continuous derivatives through a regular region R, then its value at
any point P within the harmonic region R, can be evaluated from its
behaviour on the boundary S:
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where n is the outward normal direction, r the distance from P to the
point of integration on S. No information about the source is needed
except that it is not located within the region R.

In the following, we will describe the four types of performing up-
ward continuation: level-to-level, level-to-draped, draped-to-level and
draped-to-draped. The simplest case is the level-to-level upward
continuation, when the potential field data is measured on a constant
altitude surface z0 and continued to some higher altitude plane. The
process is defined by an integral formulation:

U x; y; z0−Δzð Þ ¼ Δz
2π
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where Δz N 0, and z is assumed negative outward. Eq. (2) is a convolu-
tion integral and can be solved via the Fourier transform and the convo-
lution theorem. The numerical implementation of this formula
obviously considers a finite-extent dataset and equally spaced data,
which leads to known types of errors for the continued data (Fedi
et al., 2012). Upward continued data can be calculated by convolution
in either the space domain or the Fourier domain. In this last domain,
the Fourier transform of the data is simply multiplied by the frequency
operator:

e− kj jΔz ΔzN0 ð3Þ

where k is the wavenumber vector. As said before, real data is discrete
and refers to a finite survey area. Thus, when using circular convolution
to calculate upward continuation in the frequency domain, aliasing
errors can affect the low-frequency content of upward continued data.
These errors can be reduced by performing the Fourier transform on a
larger dataset, which extends outside the survey area (Fedi et al.,
2012; Oppenheim and Schafer, 1975). The enlarged dataset may be
built utilizing data from other surveys or through extrapolation algo-
rithms: zero-padding and symmetric extension (Fedi et al., 2012), max-
imum entropy extension (Gibert and Galdéano, 1985) and others.

Eqs. (2) and (3) are strictly valid for level-to-level continuations;
however potential field literature is rich in algorithms performing
upward continuation between uneven surfaces. Among them, Cordell
(1985), Pilkington and Roest (1992) and Ridsdill-Smith (2000) devel-
oped algorithms for level-to-draped upward continuation. Whereas,
Xia et al. (1993), Meurers and Pail (1998), Fedi et al. (1999), Ridsdill-
Smith (2000) and Wang (2006) formulated upward continuation algo-
rithms for draped-to-level surfaces.

In this paper we define a new approach that performs upward con-
tinuation using the relation established by Cribb (1976) between the
minimum-length solution of the inverse potentialfield problem andup-
ward continuation. We call this method Volume Upward Continuation
(VOCO) as this approach has the advantage of generating the field as a
unique solution in a 3D volume, in which all four types of continuations
(level-to-level, level-to-draped, draped-to-level and draped-to-draped)
are naturally defined.

As known, inversion implies higher computational costs than stan-
dard continuation algorithms. They are however, well compensated by
the versatility of the method in providing from a single inversion, the
continuation along any desired surface inside the source volume and
by the high-quality of the continuation.

2. Volume Upward Continuation of potential fields

2.1. Theoretical background

As described in the following, the Volume Upward Continuation of a
magnetic field is computed by: i) inverting the magnetic anomaly to
obtain theminimum-length solution; and ii) converting themagnetiza-
tion volume into an upward continued field volume.

The inverse problem for potentialfields (e.g., Fedi et al., 2005) can be
formulated by the following integral:

f rð Þ ¼
Z
V

K r; r0ð ÞM r0ð Þdr30 ð4Þ

where f(r) is the potential field measured at the point r, M(r0) is the
unknown source distribution in the volumeΩ and K(r, r0) is the kernel.
In the case of themagnetic fieldwewill denote f=ΔT and consider K as
the field measured at a distance r given by a magnetic dipole with unit-
magnetization at the point r0.

The kernel K can be expressed as:

K r; r0ð Þ ¼ μ0

4π
∂2

∂n∂t
1

r−r0k k2
ð5Þ

where μ0 is the magnetic permeability of free space, t and n are
unit-vectors along the inducing field and magnetization vectors,
and ||r − r0||2 denotes the Euclidean norm of r − r0.

Discretizing the volume Ω in an Nx × Ny × Nz grid of blocks, as-
suming that the magnetization is a piecewise function constant in
each cell Ωj, we can write a linear system of equations, calculating
expression (5) in each cell. In this way we will get P= Nx × Ny equa-
tions (one for each measurement point). Every equation will then
have N = Nx × Ny × Nz unknowns leading to the linear system:

Km ¼ d ð6Þ

where K is the kernel coefficients matrix and d is the measured data
vector. The coefficient matrix K has elements given by the expression:

Ki j ¼
Z
Ω j

K r; r0ð Þdr30 i ¼ 1;…; P; j ¼ 1;…;N: ð7Þ

The simplest solution of such an under-determined inverse
problem is the one minimizing the Euclidean norm of the solution

m: ∑
N

i¼1
mij j2

 !1=2

. This is called minimum-length solution (Menke,

1989):

m ¼ KT KKT
� 	−1

d: ð8Þ

In order to obtain an upward continued field volume, we can use the
relation shown by Cribb (1976). For a vertical direction of both the
inducing field and magnetization vectors, Cribb (1976) showed that
the Fourier transform of m could be simply expressed as:

F mi½ � ¼ 4e− kj jhi F d½ � i ¼ 1;…; L ð9Þ

where F denotes the Fourier transformation, L is the number of layers,
mi is the magnetization intensity vector of the ith layer, hi is its depth
and k is the wavevector with components kx, ky and (kx2 + ky

2)1/2.
The important information contained in Eq. (9) is that the Fourier
Transform of the ith layer of themagnetization distributionmi is direct-
ly related to the upward continued field of d, to a distance equal to the
opposite of the layer depth: zi = −hi (Fedi and Pilkington, 2012).
Thus, we can obtain d by anti-transforming the second member of
Eq. (9):

dhi
¼ mi

4
i ¼ 1;…; L : ð10Þ

This shows that the field at the altitude zi=−hi differs only for a nu-
meric constant from the magnetization of the ith layer. We may there-
fore first compute the minimum-length solution (Eq. (8)), inserting
n = t = (0,0,1) in the kernel (Eq. (5)), then compute the Volume
upward Continuation (VOCO) through Eq. (10). This procedure may
therefore be viewed as an effective alternative to common techniques
of upward continuation of the magnetic field.

Note that for real data, a regularized solution may be preferable in
order to dampen the disturbing error-propagation of the data noise.
This may be accomplished not by minimizing the model norm (as in
the case of the solution in Eq. (8)), but using the Tikhonov regularization
that takes the form:

min
m

Km−dk k22 þ λ2 mk k22
n o

ð11Þ
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