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As an effective method to improve seismic data resolution, attenuation compensation has been paid great atten-
tion. The popular method inverse Q-filter performs effectively in phase correction. But its energy compensation
part is at an extraordinary discount because of its instability. By contrast, the compensation method based on
inversion has a great advantage in algorithm stability. In this paper, the inversion process is combined with
Bayesian principle so that the prior information we learned about the actual model can be used sufficiently.
Here, we have an assumption that it is more reasonable to describe the reflectivities with sparse distribution.
This information, in general, can be transferred to a sparse constraint of the object function. And compared
with Tikhonov regularization method, it is proved to perform better in seismic resolution improvement. Mean-
while, it is insensitive to the error of Q value. Example of real data shows the validity of the method.

© 2014 Published by Elsevier B.V.

1. Introduction

Seismic wave experiences energy attenuation and velocity dispersion
while propagating through the subsurface medium. These properties are
proved to be two fundamental factors of seismic resolution reducing. To
represent the absorption issue mathematically, Futterman (1962) derived
a dispersion relationship by assuming that the Q model is frequency inde-
pendent. Thismodel obtainedwidespread applications in the researches of
seismic compensation.And it is usedas the attenuationmodel in this paper.

To improve the resolution of seismic data, attenuation compensation
must be taken into consideration. Many experts engaged themselves in
compensation problems. Hargreaves et al. (1991) propose an approach
similar to Stolt migration by regarding the compensation process as a
kind of inverseQ-filter. The revise for energy absorption andphase distor-
tion can be performed with the theory of wave-field downward continu-
ation.With this method, the phase distortion can be corrected efficiently,
but amplitude compensation is ignored because of its instability. Wang
(2002, 2003) points out that stability and efficiency are two general con-
cerns of compensation problem. He introduces a stable factor into inverse
Q-filter to control algorithm stability. And considering the computational
efficiency, the compensation process is achieved in two steps. The wave-
field of the surface record is first extrapolated to the top of the current
layer. And then constant Q inverse filtering was applied in each layer.
Based on this method, Zhang et al. (2007) extract the gain-constraint fre-
quencies from the Gabor spectrum to deduce the gain-constraint

amplitude. Yan and Liu (2009) implemented the inverse Q-filtering on
pre-stack common shot PP- and PS-waves along the ray path. In these
methods, however, the amplitude compensation is suppressed by the sta-
ble factor. Absolutely, the record of deep reflection cannot be compensat-
ed well. Zhang and Ulrych (2007) regard the deabsorption process as a
time-variant deconvolution and performed itwith least squares inversion
which can compensate the seismic amplitude better. This method was
implemented in time domain. Based on exploding reflector idea, Wang
(2011) reduces the compensation problem to an inversion problem and
achieves it by Tikhonov regularization. As the compensation process is
performed in frequency domain, we can choose the frequency band that
involved in the inversion. So this method is useful for the data with high
frequency ormonofrequent noises. Tests on thismethod show its stability
in amplitude compensation. Based on this theory, we have further re-
search and get some improvement on the method.

As inversion problems are always undetermined, we need a rule to
help us to choose a proper answer from the large amount of solutions.
Tikhonov regularization added a smoothness constraint to the objective
function to improve the inversion stability. However, it will reduce the
seismic resolution, especially for the datawith high dominant frequency
and low signal noise ratio (SNR). Here, we choose Bayesian method to
solve this inversion problem. The Bayesian theory provides us a frame-
work to combine the priori model information with the information
contained in the data and build a more refined inversion function. To
describe the sparseness of the reflectivities, we suggest that it follows
Laplace distribution. Then with Bayesian inversion method, the seismic
resolution can be improved sufficiently, and this method is insensitive
to the error of the Q value.
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2. The theory of compensation based on inversion

Wang (2011) proposed a compensation method which attributes
the deabsorption problem to an inversion issue. He states the thought
and deductive procedure in detail. Now, we just have the key steps
being discussed.

Suppose that the seismic wavelet is w(t):

w tð Þ ¼
Z∞
−∞

ŵ ωð Þeiωtdω: ð1Þ

ŵ(ω) is the frequency spectrum. This equation means that the seismic
wavelet can be regarded as the superposition of a series of simple
harmonic waves ŵ(ω)eiωt, in whichω is the frequency of the harmonic
wave.

With the theory of exploding reflector, the zero-offset synthetic
record can be expressed as:

s tð Þ ¼
Z

dω
Z

r t0
� �

ŵ ωð Þeiωte−iωt0dt0; ð2Þ

in which r(t′) is the reflector coefficient of the model.
Then, using Futterman model, Wang (2011) gets the absorbed

record:

s tð Þ ¼
Z

dω
Z

r t0
� �

ŵ ωð Þeiωte−iωt0 ω0
ωj jγe−ωt0

ω0
ωj jγ 1

2Q t0ð Þdt0: ð3Þ

whereγ≈ 1
πQ.Q(t′) is theQ-factor of themedium, andω0 is the reference

frequency which is always regarded as the dominant frequency.
However, the derivation by Wang (2011) doesn't take random

noises into consideration. To close to the real data, we represent the
data as:

s tð Þ ¼
Z∞
−∞

dω
Z∞
−∞

r t0
� �

ŵ ωð Þeiωte−iωt0
ω0
ωj jγe−ωt0

ω0
ωj jγ 1

2Q t0ð Þdt0 þ n tð Þ ð4Þ

in which n(t) is the environment noises.
By Fourier transformation, n(t) can be rewritten as:

n tð Þ ¼
Zþ∞

−∞

n ωð Þeiωtdω; ð5Þ

where n(ω) is the frequency spectrum of the environment noises.
Replace n(t) in Eq. (4) with (5):

s tð Þ ¼
Z∞
−∞

eiωt
Z∞
−∞

r t0
� �

ŵ ωð Þe−iωt0
ω0
ωj jγe−ωt0

ω0
ωj jγ 1

2Q t0ð Þdt0 þ n ωð Þ
0
@

1
Adω ð6Þ

Then the spectrum of the attenuated data is like:

ŝ ωð Þ ¼ ŵ ωð Þ
Z∞
−∞

r t0
� �

e−iωt0 ω0
ωj jγe−ωt0

ω0
ωj jγ 1

2Q t0ð Þdt0 þ n ωð Þ: ð7Þ

Suppose the data for compensation is deconvolved, the frequency
spectrum can be reduced to:

ŝ ωð Þ ¼
Z∞
−∞

r t0
� �

e−iωt0
ω0
ωj jγe−ωt0

ω0
ωj jγ 1

2Q t 0ð Þdt0 þ n̂ ωð Þ ð8Þ

where n̂ ωð Þ ¼ n ωð Þ
ŵ ωð Þ.

Based on Eq. (8), we define

g ω; t0
� � ¼ e−iωt0

ω0
ωj jγe−ωt0

ω0
ωj jγ 1

2Q t0ð Þ: ð9Þ

Then Eq. (8) can be rewritten as:

ŝ ωð Þ ¼
Z

g ω; t0
� �

r t0
� �

dt0 þ n̂ ωð Þ ð10Þ

For each separated frequencyωi, we rewrite the equation in discrete
form:

ŝ ωið Þ ¼
X
j

g ωi; t
0
j

� �
r t0j
� �

△t0 þ n̂ ωið Þ; i ¼ 1;2;3⋯N ð11Þ

tj′(j = 1 : M) is the sampling time of the model and △t′ indicates the
time sampling interval.

The process of attenuation compensation is to obtain the reflector
coefficient r(t′) from the frequency spectrum ŝ(ω). It is an inversion
problem in some extent, and the kernel matrix is Gij = g(ωi, tj′)△t′.

Then we can find something in common between the theory men-
tioned above and the deabsorption method proposed by Zhang and
Ulrych (2007). The similarity is that both methods concludes the com-
pensation issue to an inversion problem while they have a big differ-
ence. Zhang did the seismic compensation in time domain and its
kernel matrix G is composed of time-variant wavelets with amplitude
attenuation only. And the required dispersive phase correction is ap-
plied on the traces before amplitude compensation. In our method,
the kernel matrix G takes both energy absorption and frequency disper-
sion into account. Phase correction and energy compensation are done
in one step. In addition, it is implemented in frequency domain which
is convenient for us to choose the frequency band with higher SNR.

3. The Bayesian inversion

In order to discuss the inversion problem, we represent the solution
(the sparse reflectivities) with vector m and the observed data with d.
The data d is not the right response of vector m because the seismic
data is mixed with noises. Meanwhile, the observed data which is
discrete can never describe the continuous model completely. All
these factors lead to the fact that infinity models can be found to fit
the data.

As the discrete frequency spectrum of absorbed data is like:

ŝ ωið Þ ¼
X
j

g ωi; t
0
j

� �
r t0j
� �

△t0 þ n̂ ωið Þ ð12Þ

Let gi,j = g(ωi, tj′)△t′, Eq. (12) can be rewritten as:

ŝ1
ŝ2
⋮
ŝN

0
BB@

1
CCA ¼

g1;1 g1;2 ⋯ g1;M
g2;1 g2;2 ⋯ g2;M
⋮ ⋮ ⋮
gN;1 gN;2 ⋯ gN;M

0
BB@

1
CCA

r1
r2
⋮
rM

0
BB@

1
CCAþ

n̂1
n̂2

⋮
n̂N

0
BB@

1
CCA ð13Þ

d= (ŝ1, ŝ2,⋯, ŝN)T is the observed data,m= (r1, r2,⋯, rM)T is the solution
of the inverse problem, and n̂ ¼ n̂1; n̂2; ⋯; n̂Nð ÞT represents the recorded
environment noises, in which •T indicates the transposition of vector •.
G = (gi,j)N × M is the kernel matrix.

Zhang (2009) points out the noises n is normally distributed as
N(μ=0,σn

2), where σn
2 is the variance and μ is themean of the probabil-

ity density function (PDF) respectively.
The likelihood of the data is given by:

p djm;σnð Þ ¼ 1
2πσ2

n

� �N
2

e
− 1

2σ2
n
d−Gmk k22

; ð14Þ

where N is the length of the data.
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