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The residual phase estimation of a wavelet is commonly required in a stacked seismic section. Due to its ability to
measure the non-Gaussianity of a seismic trace, kurtosis maximization by a constant-phase rotation is the most
popular statistical phase estimation method. However, kurtosis does not always produce an optimal phase in
complex seismic data such as low dominant frequency data. To overcome this difficulty, we have constructed a
new Rényi divergence-based criterion to measure the non-Gaussianity of a seismic trace with a low dominant
frequency. Through a numerical test using a Ricker wavelet with fixed frequencies and varying phases, this ad-
justable criterion is shown to be more sensitive than kurtosis to a change of wavelet phase. The robustness of
this proposed method is demonstrated with two hundred different phase estimations of synthetic records
with dominant frequencies of 20–50 Hz. Furthermore, very promising results have been obtained by applying
this method to three data sets with a dominant frequency of 25 Hz in tight gas reservoirs at a depth of more
than 4000 m.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The control of the wavelet phase plays an important role in current
seismic acquisition and processing (Trantham, 1994). For example,
the phase of a seismic wavelet directly influences the results of
deconvolution and inversion (Berkhout, 1977; Wiggins, 1978, 1985; Yua
and Wang, 2011). In a stacked seismic section, each trace can be consid-
ered as a reflectivity series convolved with a zero phase wavelet (Levy
and Oldenburg, 1987). Here, the desired zero phase of a wavelet is an ac-
cepted assumption to control the quality of processing and interpretation.
But in real seismic data, despite the best efforts to control the phase of a
wavelet during processing, the zero phase assumption is sometimes vio-
lated (van der Baan, 2008). Phase distortions arise due to a variety of rea-
sons such asdispersion, attenuation, andband-limit (Levy andOldenburg,
1987). Therefore, a further residual phase correction of the wavelet will
be required in the stacked seismic section (Edgar and van der Baan,
2011; Gao and Zhang, 2010; Levy and Oldenburg, 1987; Longbottom
et al., 1988; Lu, 2005; van der Baan and Fomel, 2009; Yu et al, 2012).

In general, there are deterministic and statistical ways to deal with re-
sidual phase estimation (Tygel and Bleistein, 2000). The deterministic
method is to use existing well logs. A future phase correction is applied
to the data such that they match the zero phase synthetics created from
well logs (van der Baan, 2008). Unfortunately, the wavelet phase may

vary laterally away from wells and vertically with time where well logs
are not accessible (Xu et al., 2012). Thus, sometimes the deterministic
method is limited, and an alternative statistical method is necessary. In
contrast, statistical phase estimation does not require well logs and can
estimatewaveletmerely from seismic data. In this paper, we focus on sta-
tistical phase estimation.

Levy and Oldenburg (1987), Longbottom et al. (1988), and White
(1988) first simplified the statistical phase estimation problem by
assuming that a seismic wavelet can be described accurately by a
constant-phase approximation for stationary data. For a constant-
phase rotation the optimum phase renders the data maximally
non-Gaussian, because the data with zero phase are maximally non-
Gaussian compared with those of non-zero phase (van der Baan,
2008). Obviously, how to construct a measure of the non-Gaussianity
of the data is the key for a statistical method. During the past three
decades, many researchers have studied several criteria such as the
kurtosis criterion (Wiggins, 1978), the parsimony criterion (Claerbout,
1977), the exponential transform criterion (Ooe and Ulrych, 1979),
the Sech criterion (Sacchi, 2002), the Cauchy criterion (Sacchi, 2002),
and the second- and third-order moments (Lu, 2005) to describe
the non-Gaussianity of data. In most cases, the kurtosis criterion is
the most popular choice. In a kurtosis-based algorithm, a series of
constant-phase rotations is applied to the recorded seismic trace. The
angle corresponding to the maximum kurtosis value determines the
most likely wavelet phase (van der Baan, 2008). Unfortunately, real
seismic data are usually nonstationary. To address this challenge, van
der Baan (2008) developed a time-varying wavelet estimation method
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to handle nonstationary nonminimum-phase wavelets. His method in-
voked a piecewise-stationarity assumptionwithinmoving analysiswin-
dows using kurtosis maximization by constant-phase rotation. As
kurtosis is a higher-order statistics, the reliability of its estimation
depends on the amount of data available. Accordingly, the chosen win-
dow requires a minimum length. Therefore, van der Baan and Fomel
(2009) demonstrated a space-and-time-varying wavelet estimation
method using regularized local kurtosis maximization, which makes
van der Baan's method more robust with respect to smaller window
sizes or regularization lengths. Analogous to local kurtosis, Fomel and
van der Baan (2010, 2014) proposed local similarity with the envelope
and local skewness as phase measures, which show a higher dynamic
range and better stability in synthetic and field data examples.

However, the kurtosis maximization method does not always show
a positive performance due to variable factors of seismic data. Based on
synthetic and real seismic data, Xu et al. (2012) discussed some of the
factors (e.g. reflectivity character, seismic frequency bandwidth,
signal-to-noise ratio, and geology) that potentially affect the final phase
estimated by a kurtosis-based method. For example, they indicated that
there is a possible dominant frequency threshold for phase estimation
using the kurtosis maximization method. Recently, we also observed
that sometimes the kurtosis-based method is not stable enough to
work with seismic data having a dominant frequency of 25 Hz in more
than 4000 m deep tight gas reservoir, Ordos Basin, China. This illustrates
that low dominant frequency data with a zero phase may not show
more non-Gaussianity measured by kurtosis than those of a non-
zero phase. Furthermore, Painter et al. (1995) show experimental
histograms of reflection coefficients from 14 wells in Australia
accurately approximated by symmetric Levy-stable probability density
functions that do not have higher-order statistics, such as kurtosis.
Thus, a more suitable criterion of non-Gaussianity in statistical phase
estimates may be available for low dominant frequency data in deep
reservoirs.

In information theory, there are many measures of non-Gaussianity
of a distribution. Specifically, kurtosis is just an approximate measure,
which is derived from negentropy based on the Kullback–Liebler
divergence. Since 1967, Csiszár introduced and studied f-divergence
including the Kullback–Liebler divergence, the Hellinger distance,
and the total variation distance, which measures the difference
between two probability distributions (Ali and Silvey, 1966). Based on
f-divergence, it is convenient to yield a generalized family of non-
Gaussian measurement.

In this paper, a new criterion based on the Rényi divergence (one
of the Csiszár f-divergences) is constructed to indicate the non-
Gaussianity of seismic data. This criterion ismaximizedwhen the locally
observed phase is close to zero. Advantages of the new criterion include
its higher sensitivity and better stability, which make it suitable for
choosing phase corrections in lowdominant frequency data in deep res-
ervoirs. Using synthetic and three field-data examples, we demonstrate
the properties and applications of the proposed criterion.

2. Method

The optimum phase could be estimated by applying a series of
constant-phase rotations to the analyzed seismic trace. The phase rota-
tion angleφ forwhich the trace ismaximally non-Gaussian corresponds
to the desired phase correction (Levy andOldenburg, 1987; Longbottom
et al., 1988; van der Baan, 2008; van der Baan and Fomel, 2009; White,
1988). In the time domain, the rotated trace yrot(n) can be obtained
from the original trace y(n) by:

yrot nð Þ ¼ y nð Þ cosφþ H y nð Þ½ � sinφ; ð1Þ

where H[⋅] denotes the Hilbert transform. Since a zero phase wavelet
contains the majority of its energy in a relatively narrow time range,
its kurtosis is larger than that of any non-zero phase wavelet. So,

when the kurtosis of yrot(n) reaches its maximum, the related angle is
considered as the most likely phase correction for y(n). This method
for estimating the phase of a seismic wavelet is called the constant-
phase rotation method (Levy and Oldenburg, 1987).

The constant-phase rotation method is based on the theory of
entropy. The operation of rotating the seismic trace increases its non-
Gaussianity. Based on Kullback–Liebler divergence, negentropy is used
to measure the non-Gaussianity of a random variable, which is defined
as (Hyvarinen et al., 2001):

Hneg Xð Þ ¼ ∫∞
−∞ f xð Þ log f xð Þ

gσ xð Þdx ¼H XGaussð Þ−H Xð Þ ð2Þ

where H(X) denotes the entropy of a continuous random variable X
whose probability density function (PDF) is f(x), XGauss is a Gaussian
variable with the same variance as that of X. σ is the standard deviation
of the data whose PDF is gσ(x) with a zero mean. Negentropy is non-
negative, and will become larger as a random variable departs from
Gaussianity. In practice, the negentropy of a random variable with a
zero mean and unit variance can approximately be obtained as follows
(Hyvarinen et al., 2001):

Hneg Xð Þ ≈ 1
12

E X3
� �2 þ 1

48
kurt2 Xð Þ; ð3Þ

where

kurt Xð Þ ¼ E X4
� �

−3 ð4Þ

is defined as the kurtosis of X. If X satisfies a symmetrical probability
distribution function, the equation above reduces to:

Hneg Xð Þ ≈ 1
48

kurt2 Xð Þ: ð5Þ

Hence, the constant-phase rotation method is related to the
minimum entropy deconvolution proposed by Wiggins (1978). To
guarantee scale-invariance, Wiggins adopted the standardized fourth
cumulant as a criterion to performing optimization, for a random
variable with a zero mean, which is defined as:

kurt Xð Þ ¼
E X4
� �

E2 X2
� �−3: ð6Þ

The kurtosis is usually calculated by Eq. (6) for the constant-phase
rotation method. From Eq. (1) to Eq. (6), the derivation of a kurtosis-
based wavelet estimation is clearly shown. Following the above idea
of maximizing kurtosis, we attempt to construct a more suitable and
general criterion instead of kurtosis.

With respect to Csiszár's divergences, the Rényi measure is
considered in this study, which is given by (Rényi, 1960):

DR f ; gð Þ ¼ 1
α−1

log∫ f α xð Þg1−α xð Þdx; α N 0;α ≠ 1; ð7Þ

where f(x) and g are two probability density functions (PDF). For
α = 1, the Rényi divergence reduces to the classical Kullback–Liebler
divergence (Hyvarinen et al., 2001). The Rényi divergence is one of the in-
formation measures that show a difference between two distributions,
which is nonnegative and equals zero if and only if f(x) = g(x).

If we use f(x) to denote the PDF of the seismic data, and let g be a PDF
of the normal distribution with the same variance as that of f(x), then
the Rényi divergence will become larger as the data departs from the
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