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Downward continuation of potential field data plays an important role in interpretation of gravity and magnetic
data. For its inherent instability,manymethods have been presented to downward continue stably and precisely.
In thismanuscript,we propose an improved regularization operator for downward continuation of potentialfield
data. First, we simply define a special wavenumber named the cutoff wavenumber to divide the potential field
spectrum into the signal part and the noise part based on the radially averaged power spectrum of potential
field data. Next, we use the conventional downward continuation operator to downward continue the signal
and the Tikhonov regularization operator to suppress the noise. Moreover, the parameters of the improved
operator are defined by the cutoff wavenumber which has an obvious physical significance. The improved oper-
ator can not only eliminate the influence of the high-wavenumber noise but also avoid the attenuation of the
signal. Experiments through synthetic gravity and real aeromagnetic data show that the downward continuation
precision of the proposed operator is higher than the Tikhonov regularization operator.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The analytical continuation of potential fields is recognized as being
a powerful tool in the transformation of geophysical potential fields
(mainly in gravity and geomagnetic fields). Continuation of the poten-
tial field data above the level of measurement is known as upward con-
tinuation and in the opposite direction (below the level ofmeasurement
but must be above sources), it is known as downward continuation.
During the potential field data processing and interpretation, upward
continuation is often used to enhance the regional components in the
original data by attenuating shallow surface sources manifestation and
downward continuation is often used to enhance the detection of
shallower sources by extracting the local anomalies and calculate the
depth of the important shallowest sources.

Since the upward continuation is stable, its inverse operation, down-
ward continuation, on the other hand, sharpens the geophysical anom-
alies in potential fields and results in instability at different levels of
continuation. Many approaches have been proposed to solve this prob-
lem. These approaches can be classified into two categories: the direct-
ed method and the iterative method. The directed methods include the
filter windows (Ku et al., 1971), the Wiener filter theory (Clarke, 1969;
Pawlowski, 1995; Trompat et al., 2003), the boundary element method
(Xu, 2001), the multiscale edge theory (Trompat et al., 2003), the inte-
grated horizontal derivative and compensation approaches (Cooper,
2004) and the Tikhonov regularization theory (Abedi et al., 2013;
Ferguson et al., 1988; Li et al., 2013; Pašteka et al., 2012). The iterative

methods include Taylor series approximation method (Fedi and Florio,
2002; Peters, 1949; Zhang et al., 2013), techniques based on the
equivalent-layer theory (Dampney, 1969; Hansen and Miyazaki, 1984;
Leão and Silva, 1989; Li and Oldenburg, 2010; Oliveira et al., 2013),
the spline function method (Wang, 2006), the iterative Fourier equiva-
lent source method (Xia et al., 1993) as well as some other iterative
methods (Dmitriev and Dmitrieva, 2012; Guspi, 1987; Ma et al., 2013;
Strakhov and Devitsyn, 1965; Xu et al., 2007; Zeng et al., 2013).

According to the comparative analysis made by (Zeng et al., 2013)
and (Zhang et al., 2013), the performance of Tikhonov regularization
is better than almost all of iterative methods whichmentioned in previ-
ous literatures. In addition, many iterative methods have some of their
inherent disadvantages. For example, the semiconvergence property
(the downward continuation error of these iterative methods is de-
creasingfirst and increasing afterwards) results in the iterative numbers
and stopping criterions of these iterativemethods are not easy to deter-
mine. Of course, the Tikhonov regularization method also has some dif-
ficulties in practice, such as the saturation effect (itmeans that the order
of error estimate between the solution of Tikhonov regularizationmethod
and the exact solution cannot be infinitely improved along with the im-
provement of the smoothness properties (Engl et al., 1996)) and the
choice of the regularization parameter. In this study, we present an im-
proved regularization operator for downward continuation based on the
characterization of the potential field spectrum. First of all, an ad hoc
wavenumber named the cutoff wavenumber is defined to divide the po-
tentialfield spectrumanddetermine the regularization parameters. Then,
we apply the conventional downward continuation operator and the
Tikhonov regularization operator to downward continue the two parts
of potential field spectrum, respectively. We compare the downward
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continuation precision of the improved operator with the Tikhonov
regularization operator based on synthetic gravity and real aeromagnetic
data. The results show that themethod for the choice of the regularization
parameters is effective and our proposed operator attains better down-
ward continuation accuracy than the Tikhonov regularization operator.

2. Regularization for downward continuation of potential field

The analytical continuation is defined as the well-known Dirichlet
integral, which is also known as Fredholm integral equation of the
first kind (Blakely, 1996):

u x; y;−hð Þ ¼ h
2π

Z ∞

−∞

Z ∞

−∞

u ξ;η;0ð Þ
x−ξð Þ2 þ y−ηð Þ2 þ h2

h i3=2 dξdη; ð1Þ

where u(x,y,0) and u(x,y,−h) are respectively the potential field data at
a lower observation level and at a vertical distance of h above. Applying
2D Fourier transform to Eq. (1) yields:

U ωx;ωy;−h
� �

¼ e−hωr � U ωx;ωy;0
� �

; ð2Þ

whereU(ωx,ωy,−h) andU(ωx,ωy,0) denote the Fourier transformof u(x,
y,−h) and u(x,y,0), respectively;ωx andωy are thewavenumbers in the

x- and y-directions and ωr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

x þω2
y

q
is the radial wavenumber.

e−hωr is the upward continuationoperator and vice versa for the down-
ward continuation operator. It has been shown that for the downward
continuation operator, high wavenumbers have high amplitudes, and
hence any noise in the data at high wavenumbers is enhanced, render-
ing the operation numerically unstable. This can be achieved by formu-
lating the process as an inverse problem and deriving a regularization
operator. The Tikhonov regularization operator has the following form
(Abedi et al., 2013; Li et al., 2013; Zeng et al., 2013):

R ¼ 1
1þ αe2hωr

� ehωr ; ð3Þ

where α is the regularization parameter. It is clear that the regulariza-
tion operator consists of two parts: the classical downward continua-
tion operator ehωr and the regularization low-pass filter 1

1þαe2hωr
. It is

clear that the regularization low-pass filter attenuates the influence of
the high-wavenumber components and ensures the stability of the reg-
ularization operator. For simplicity, as we know, the observed potential
field can often be divided into the deep-source long-wavelength poten-
tial field and the shallow-source short-wavelength potential field. The
effects of deeper-source dominate the low-wavenumber part of the spec-
trum, whereas shallower source and white noise dominate the higher
wavenumbers. In this study, the potential field effect of deeper sources
is regarded as the signal. Other parts of the spectrum representing shal-
low sources or fluctuations due tomeasurement error are considered un-
desirable components of the overall potential field and are assumed to be
noise. Naturally, if we want to design a better regularization low-pass
filter, it is desired to all-pass the signal parts while at the same time sup-
pressing the noise parts. As a result, we proposed the following improved
regularization low-pass filter:

filter ¼
1 ifωr≤ωc
1

1þ αe2hωr
ifωrNωc

8<
: ð4Þ

where ωc is the cutoff wavenumber which divides the potential field
spectrum into two parts.

3. Choice of the filter parameter based on the characterization of the
potential field spectrum

The key of the regularization low-pass filter in Eq. (4) is the choice of
the filter parameter α. In previous work, Pašteka et al. (2012) suggest
the use of the C-norm criterion which is very close to the concept of
the L-curve criterion to optimally define the value of the regularization
parameter. Li et al. (2013) and Zeng et al. (2013) used the L-curve crite-
rion for choosing the optimal regularization parameter. The procedures
of these twomethods for the choice of the regularization parameter can
be summarized as follows. First, used values of the regularization pa-
rameter α are changed in a geometrical sequence (with the common
ratio greater than 1), starting with very small values and finishing
with relatively large ones. Then, after repeatedly performing the down-
ward continuations with various α, they get optimal regularization
parameters by some characters of the specific curves respectively. For
example, the local minimum for the C-norm curve, the corner point or
the maximum curvature point for L-curve. From the abovementioned
discussion, we know that the calculation of the optimal regularization
parameters by L-curve and C-norm is a time-consuming process. In
this manuscript, the optimal selection of the filter parameters is
achieved by consideration of the spectral characteristics of potential
field data.

Spector andGrant (1970) illuminated that a potentialfield spectrum
has a characteristic shape which is dominated by the effect of source
depth. Fig. 1 shows an assumptive example for the radially averaged
power spectrum of potential field. Firstly, deeper sources have corre-
spondingly steeper spectral slopes. Observational errors, if statistically
uncorrelated, are represented by white noise, the mean spectral value
of which is a constant. Noise dominates the potential field spectrum at
higher wavenumbers. Secondly, since the spectrum has a sloping line
representing the signal and a flat line representing noise, a least-
squares, linear spline approximation to the spectrum seems appropri-
ate. The signal part of the spectrum is fit separately from the noise. At
last, the noise is constrained to have zero slope, and both solutions are
constrained to merge at the wavenumber ωc′. Slope and intercept of
the signal andmeannoise level arefit by least squares to spectral samples
partitioned at ωc′.

In order to regularize the downward continuation function without
overfiltering or underfiltering the data, it is necessary to choose the reg-
ularization parameters, α andωc, which taper the continuation function
beginning near the wavenumberωc′. Therefore, the regularization low-
pass filter can retain the maximum amount of signal with a minimum
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Fig. 1. The potential field spectrum for sources at two different depths, z1 and z2. Slopes of
line segments are proportional to depth with steeper slope indicating greater depth.
White noise contributes the flat part of the spectrum. The wavenumber ωc′ separates sig-
nal from noise. This is the assumption used in the regularization process.
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