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Forward modeling approach is a major concept in geophysical exploration and also a key factor in the develop-
ment of inversion algorithms. Finite elementmethod for two-dimensional (2-D) geomagnetic forwardmodeling
is based on numerical solution of the Laplace equation. In this paperwepresent a fast and accurate adaptive finite
element algorithm for forward modeling of 2-D geomagnetic structures. Our method is stable and is reliable to
recover 2-D magnetization distribution with complex shapes. It uses an unstructured triangular grid which al-
lows modeling the complex geometry with the presence of topography. The Galerkin's method is used to derive
the systems of equations. Then, the conjugate gradient solver with incomplete LU decomposition as the pre-
conditioner is used to solve the system of equations. To ensure numerical accuracy, iterative mesh refinement
is guided by a posteriori error estimator. We validate our algorithm in simple geometry by analytical technique.
The tests on synthetic data illustrate a good performance of themethod inmapping the complex geometry of the
magnetic sourceswith topography. Themagnetic responses of themodel have proved to be different in the pres-
ence of topography. Therefore, it is highly recommended to consider the effects of topography on interpretation.
Finally, we applied numerical FEM algorithm to real data set providing fine recovery model of the shallow high
mineralized crustal setting of Soltanieh region, Iran.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic survey is one of the most popular geophysical techniques
for fast mapping of large areas. The main goal of magnetic prospecting
is to infer both the geometry and magnetization of the geologic struc-
ture that causes the observed magnetic anomalies. However, akin to
other potential-field methods, interpretation of magnetic field anoma-
lies is non-unique becausemore than one distribution of magnetization
(i.e., magnetic dipole moment per unit volume) and source geometry
can explain the same observed magnetic anomaly (García-Abdeslem,
2008). Although methods to model isolated magnetic anomalies using
simple geometries such as spheres, cylinders, and prisms exist, the ap-
proximation of the source body with one or more layers of contiguous
prisms is often justified (Bhattacharyya, 1980).

High-resolution magnetic surveys have advanced by allowing
scattered geological observations to be integrated into regional inter-
pretations (Gunn, 1997). As ground geophysical surveys became impor-
tant tools for mineral exploration, new techniques allowed 2-D models
of geological structures to be constrained using the results of magnetic
fields along individual profiles (Nettleton, 1942). There is a plethora of

modeling tools available for building 2-D and 3-D geological models
by potential-field data (excellent collections of papers can be found in
Caratori Tontini et al., 2009; Hamilton and Jones, 1992; Houlding,
1994; Jessell, 2001; Pflug and Harbaugh, 1992; Pignatelli et al., 2011;
Turner, 1992). For example, Talwani (1965) approximated real sources
by sets of stacked lamina formagnetic data and Plouff (1976) developed
a closed-formequation for the gravity anomaly of afinite-thickness hor-
izontal plate, which is useful for terrain corrections. Pignatelli et al.
(2011) approximated the subsurface magnetization distribution by a
set of prismatic cells with constant magnetization and Caratori Tontini
et al. (2009, 2012) developed a 3-D forward modeling equations for
the magnetic field based on a 3-D Fast Fourier Transform (FFT) of the
magnetization distribution.

To investigate subsurface structure from potential data such as
magnetic data, various methods have been developed. Blakely (1995)
divided them into three categories: the forward modeling method, the
inverse modeling method, and the data enhancement and display
method. The forward method, based on geological and geophysical in-
tuition, constructs an initial model for the source body and then com-
putes the model's magnetic effect that is to be compared with the
observed anomaly (Shin et al., 2006).

Forwardmodeling of geophysical potential fields plays an important
role in direct interpretation of magnetic anomalies. Geological struc-
tures such as faults, folds, and veins are often complex and geophysical
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parameters such as intensity of magnetization are usually also hetero-
geneous. Consequently, 2-D or 2.5-D potential field modeling has cer-
tain limitations. Barnett (1976) and Okabe (1979) developed forward
modeling techniques for gravity and magnetic anomalies due to homo-
geneous polyhedral bodies (Pohanka, 1988;Wang et al., 1980). It is easy
to approximate a homogeneous polyhedral body composed of a set of
polygonal facets of the body to the real arbitrary shape of a geological
body, and the degree of approach depends on the number of polygonal
facets and the selection of vertexes. Moreover, an inhomogeneous body
can be divided into several smaller homogenous ones. Therefore, the
calculation of gravity and magnetic anomalies due to a homogeneous
polyhedral body is more practicable and more significant than that
from other types of bodies, especially for high resolution gravity and
magnetic survey (Yao and Changli, 2007). With rapid advancement in
computation facilities, software technology, and numerical methods in
applied mathematics, solvability of geophysical forward problems has
increased immensely (Roy, 2008). Since the subsurface of the earth
has a complex geometry, solution of any realistic inverse problem de-
mands solution of the forward problems for similar type of subsurface
structure. Thus, numerical methods entered with all its well-known
tools, finite difference, finite element, integral equation, volume inte-
gral, boundary integral, and hybrids method (Roy, 2008).

The Finite element method utilizes a variational problem that in-
volves an integral of the differential equation over the model domain.
The variational integral is evaluated as a sum of contributions from
each finite element. The result is a set of algebraic equations of the
approximate solution. This system of equation has a finite size rather
than the original infinite-dimensional partial differential equations
(Ismail-Zadeh and Tackley, 2010). Among the advantages of this
approach in modeling complex irregular regions are the use of non-
uniform meshes to reflect solution gradations, the treatment of bound-
ary conditions involving fluxes, and the construction of high-order
approximations. Estimates of discretization errors may be obtained for
reasonable costs. These may be used to verify the accuracy of the com-
putation, and also to control an adaptive process whereby meshes are
automatically refined to compute solutions to desired accuracies in an
optimal fashion (Babuska and Rheinboldt, 1979; Babuska et al., 1983,
1986; Bern et al., 1999 for more details).

In this paper, we present the 2-D geomagnetic forward problem
using adaptive FEM procedure. Our algorithm implements an unstruc-
tured triangular mesh, which allows us to model complex structures
with topography and irregular magnetic body even when the ground
surface has the magnetic susceptibility.

2. Methodology

The goal of this section is to introduce a finite element approach to
solve geomagnetic problems in terms of a scalar potential in two dimen-
sional bounded domains. Several numerical methods have been devel-
oped to solve magnetostatic problems, but numerical results show that
the scalar potential approach is especially efficient. For this purpose, the
classical magnetostatic model is obtained by neglecting the time deriva-
tives in Maxwell's equation and the given divergence — free stationary
source current density j, themagnetic field H

!
and themagnetic induction

B
!

satisfy the following equations (Bermúdez et al., 2008):

∇� H
!¼ j ð1Þ

∇ � B!¼ 0 ð2Þ

The fields H
!
and B

!
are linked by constitutive relation:

B
!¼ μH

! ð3Þ

where μ is the magnetic permeability.
In the region where it is free of the source of magnetic field, there is

no electric current or displacement current. For this region, it is intro-
duced a scalar potential uwhich defines the magnetic field:

H
!¼ −∇u: ð4Þ

With Eq. (2) and Eq. (3) we have:

∇ � B!¼ ∇ � −μ∇uð Þ ¼ 0 ð5Þ

which is a PDE of Laplace type.
At interface of regions with different permeability, the normal com-

ponent of B
!
and tangential component of H

!
must be continuous. The po-

tential umust be continuous for this interface (Simkin and Trowbridge,
1979). To pose the problem in the bounded domain, Ω we have to add
adequate boundary condition to Eq. (5) (Bermúdez et al., 2008):

B
!� n!¼ gN on ∂Ω:

gN is a given data function and n! is the outward normal vector to ∂Ω
(Fig. 1). By virtue of Eq. (2) the data gN must have zero mean (compat-
ibility condition) (Bermúdez et al., 2008):

Z
gN ¼ 0:

For geomagnetic modeling and simulation of the earth core field, we
specify normal component of induction magnetic field using ambient
geomagnetic field, B0:

n!� B!¼ n!� μ∇u ¼ n!� B!0 ¼ gN : ð6Þ

This normal component field is specified under global definition of
ambient magnetic field.

For finite element solution of Eq. (5) with specific boundary condi-
tion, we use weak formulation because classical solution of boundary
value problem may not be available. To derive the weak form of Neu-
mann problem for any test function,v is defined on Ω. Multiplying by
Eq. (5) and integrating over model Ω, then performing the integration
calculation using Green's formula and substitute the boundary condi-
tion yields (Gockenbach, 2006):

Z
Ω

∇ � −μ∇uð ÞvdΩ ¼ 0 v ϵH1 Ωð Þ

Z
Ω

μ∇u �∇v−
Z
∂Ω

v μ n �∇uð Þ ¼ 0

Fig. 1.Magnetic material in domainΩwith the outer Neumann boundary∂Ω, and the out-
ward unit normal vector n on ∂Ω.
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