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We develop here an efficient approach using singular spectral analysis (SSA) for frequency filtering of seismic
reflection data in t-x domain. The abrupt change in geophysical records creates ringing artifacts in the Fourier
based filtering operations. We use here complete data adaptive basis functions in SSA filtering, which enables
the self-similarity of the data in reconstruction of such sudden changes. We first tested the SSA based filtering
algorithm on synthetic seismic data and then applied to real seismic reflection data from Singareni coalfields,
Andhra Pradesh, India. The individual trace from each channel in the shot gathers is processed and compared
with Fourier and multichannel SSA filtered output. Our analysis demonstrates that SSA filtering attenuated the
low frequency ground role and high frequency noise embedded in the seismic record in a more efficient way
than the other two methods. The coal formations and faults identified in the stack section of filtered data
match quite well with the geological information available in the study region.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Frequency domain filtering is a common practice in seismic data
processing (Canales, 1984; Yilmaz, 1987; Abma and Claerbout, 1995;
Yilmaz, 2001; Karsli, 2006). For this, researchers have used Fourier
(Bracewell, 1986; Yilmaz, 1987, Foufoula-Georgiou and Kumar, 1994),
and Curvlet (Hennenfent and Herrmann, 2006) methods extensively.
The underlying methods involve decomposition of signal into the
basis functions (like sines and cosines) of different frequencies and
then zeroing/shrinking the coefficients corresponding to the frequencies
to be filtered (Claerbout, 1976; Sheriff and Geldhart, 1983). However, for
analyzing/filtering the signals with sudden changes/discontinuities
the Fourier based methods (sinusoidal) are not appropriate (Bansal
and Dimri, 2001, 2005; Bath, 1974; Dimri, 1992). Such abrupt
jumps/discontinuous signal are generally represented by the boxcar
function or seesaw-shapes and could be better reconstructed by a
single pair of eigen modes using SSA rather than involving many
harmonics with fixed basis functions (Ghil and Taricco, 1997). In
essence, the SSA technique uses the complete data adaptive
eigenvectors as basis function which enable to differentiate signal
more precisely from noise. The coherent and correlated noise
produce systematic eigenvector pattern facilitating to identify
them in the eigen spectrum as they map on to the tail of the spec-
trum. If we analyze the different eigen components of geophysical

data sets, the shape and frequency content of each component differs
significantly. Hence, a more appropriate and accurate signal recon-
struction is possible in SSA (Yiou et al., 2000). Recently the SSA
method has been applied for filtering the geophysical data and astro-
nomical images (Zotov, 2012) and also for frequency filtering
(Golyandina and Zhigljavsky, 2013; Harris and Yan, 2010). Bozzo
et al (2010) has carried out comparative study of spectral compo-
nents employing the SSA and Fourier methods on synthetic data.
Their analysis suggested that for the systematic and non-noisy peri-
odic data the results of both the methods agree well. However, if
noise is present in the data, the data-adaptive basis functions or the
eigen modes of the trajectory matrix provide a better way of signal
filtering and reconstruction in the time domain than in the classical
Fourier method.

Trickett (2003) has used SSA for seismic image processing. In amore
recent study Oropeza and Sacchi (2011) employed the f-x domainMul-
tichannel SSA (MSSA) method for de-noising multi channel seismic
data. In both the methods, the data was initially converted into the fre-
quency domain using Fourier transform and then it was subjected to the
SSA/MSSA. It may, however, be noted that domain conversion of data
may allow artifacts in the data, which would further be enhanced in
the SSA reconstruction. We can suppress the effect of such artifacts, by
applying SSA algorithm directly on the time domain seismic data. The
purpose of the present research work is therefore to (i) develop a SSA
based t-x frequency filtering algorithm (ii) test the algorithm on syn-
thetic and real time seismic reflection data in comparison with Fourier
and MSSA methods and (iii) apply the method on the seismic refection
data from a zone of coal reserves.
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2. Methodology

The singular spectral analysis (SSA) is known since a decade
(Broomhead and King, 1986a, b; Fraedrich, 1986; Golyandina et al,
2001; Vautard et al, 1992) and is an efficient method to identify the
unknown/partially known dynamics of data series (Ghil et al, 2002)
from noise background. The brief methodology of SSA is presented in
the following four systematic steps:

I). Embedding: We begin with embedding the data of each trace
Y(t) = {y1, y2,…., yN} in the form of trajectory matrix T(L × K)

using an appropriate window length L (2 b L ≤ N/2, K = N −
L + 1), where N is the number of data points. Here trajectory ma-
trix T L × K= [Y1: ........ :YK], where Yi= {yi, yi + 1, yi + 2,.…

y
i + L − 1} is

a vector of length L and 1 ≤ i ≤ K. The selection of optimal win-
dow length is crucial in the SSA method. In general, one has to
choose the window length at least equal to the highest period
that is present in the data within the classical limit 2 b L ≤ N/2.
For the present analysis, we have chosen the window length
twice the time corresponding to the lowest frequency present
in the data.

II). Decomposition: In the second step, the trajectory matrix was
subjected to Singular Value Decomposition (SVD) to obtain
eigenvectors (Ui, Vi) and eigenvalues (λi). The decomposition

of trajectory matrix T in terms Ui, Vi and λi is given by T ¼

∑
d

i¼1
√λi UiV

T
i . The group (√λi, Ui, Vi) is called the ith

eigentriplet.
III). Grouping and Reconstruction: After obtaining the eigentriplets,

periodicities of eigenvectors calculated to perform frequency fil-
tering. For low pass filtering with a cut off frequency fL, the
eigentriplets corresponding to eigenvectors with periodicity
less than1/fLwere dropped in the grouping process. A similar ap-
proach used for high and band pass filtering. By doing so, the tra-
jectory matrix (X) is reconstructed from the selected group of

eigentriplets using X ¼ ∑
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λiUiV

T
i

q
, where ‘i’ represents the

group of selected eigentriplets (Golyandina and Zhigljavsky,
2013). The reconstructed trajectory matrix looks as follows.

X ¼
y 1;1ð Þ ⋯ y 1;Kð Þ
⋮ ⋱ ⋮

y L;1ð Þ ⋯ y L;Kð Þ

2
4

3
5:

IV). Diagonal Averaging: Finally, the reconstructed trajectory matrix
diagonally averaged to get the filtered data series. The elements
of reconstructed series Yr = {,g1, g2 … gk …….. gN } are comput-
ed from the reconstructed trajectorymatrix X as follows. Let X be
an L × Kmatrix with elements yij (1≤ i≤ L, 1≤ j≤ K). Let L⁎=
min (L, K), K⁎=max (L, K), N= L+K− 1 and y� ij ¼ yij if L b K
y� ij ¼ yji otherwise.

gk ¼ 1
kþ 1

Xkþ1

m¼1

y�m;k−mþ2 for 1≤kbL�

1
L�

XL�

m¼1

y�m;k−mþ2 for L
�≤kbK� þ 1

1
N−k

XN−K�þ1

m¼k−K�∓2

y�m;k−mþ2 for K
� þ 1≤k≤N:

For the above procedure, a parallelMATLAB codewas developed and
the results are discussed and demonstrated in the next section.

3. Data analysis and discussion

We generated a pure synthetic trace (Fig. 1.a) by convolving the
Ricker wavelet with reflection coefficient and then added 30% correlat-
ed noise using the equation xn = σ. xn − 1 + ε (σ is chosen between 0
and 1 and ε is white noise) (Fig. 1.b). The SSA and Fourier filtered out-
puts of noisy trace (Fig. 1.b) are shown respectively in Fig. 1c and d.
One can see that the reflectors reproduced in the Fourier filtered data
(1d) contain many pseudo events than the pure due to the presence
of noise. On theother hand thenoisy data processed using the SSAfilter-
ing technique is clean and the events are almostmatchingwith the pure
data. Hence, it is clear from this synthetic example that the proposed
SSA filtering method is efficient in reducing the effects of artifacts/
noise arising from the correlated noise in comparison to the Fourier
based filtering method.

The seismic data used in the present study was taken from the
Singareni coalfields, Ramagundam, situated in the Pranhita–Godava-
ri (PG) graben of the Andhra Pradesh, India. PG graben is bounded by
the major tectonic units of Bastar and Dharwar cratons that
contained the Archaean gneisses and granites overlain by Proterozo-
ic sedimentary basins. In this region, the eastern tilting generated by
complex system of faulting followed by erosion affected the Lower
Gondwana rock formations leading to the gradual east ward expo-
sure of successive younger rocks. The overall strike is ~NNW–SSE
and dips gently towards ENE and WSW. There are two sets of proba-
ble faults likewise NW–SE faults parallel to the PG basin boundary
faults, and NE–SW oriented faults. These faults are largely dip-slip
faults (normal-sense) and appear to cut across all the Lower
Gondwana formations, although there is possible minor left-lateral
strike-slip component (Murthy and Rao, 1994). In general, the fault
systems observed, may be related to either the Permian or Mesozoic
fault systems (Biswas, 2003). The area is traversed by a major NW–

SE trending faults that runs through the middle of the Ramagundam
coalfield, (Chaudhuri and Deb, 2004; Das et al., 2003).

The seismic reflection data was acquired using 60 channels at
0.25 mS sampling interval and with dynamic range of 144 dB. The
shot gather data was corrected for NMO and then processed using
the SSA filtering algorithm. Following the method as discussed
above, trajectory matrix was formed using individual channel data
and decomposed into eigenvectors and values. In the present study,
optimum window length of 70 mS was selected, which correspond
to 280 data points (t = 0.25 × 280 = 70 mS). In order to reconstruct
trajectory matrix, we grouped a band of 5 to 17 eigenvectors corre-
sponding to frequencies range from 30 to 140 Hz. Accordingly the
first four eigenvectors with high period (frequency less than 30 Hz)
corresponding to ground roll and other low frequency noise and
the higher order vectors from 18 onwards corresponding to high
frequency (more than 140 Hz) were discarded. Finally the filtered
seismic data is obtained by the diagonal averaging of the recon-
structed trajectory matrix.

Initially, the result of SSA filtering was compared with the results
of MSSA (Oropeza and Sacchi, 2011) and Fourier filtering. Compara-
tive results show that the ringing effect is present in the FFT filtered
data, which has altered the real features of the original reflectors.
Similarly in the MSSA output also the reconstruction of frequency
slice fills up the gaps and thereby enhanced the ringing effect,
which can be seen between 200 and 350 mS time range (Fig. 2).
Clearly these techniques enhance artifacts and hide the real reflec-
tors, which are present in the original data. However, as can be
seen from Fig. 2 the seismic signals filtered using the SSA filtering
approach clearly reproduced the reflectors of original record, which
are of geological significance.

According to Golyandina and Zhigljavsky (2013) (3, Section 3.9)
periodograms of eigenvectors are almost the same as frequency
response of s of filters that produce reconstructed series from l-th to
k-th points. Fig. 3 shows the comparison of power spectral density of
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