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Finite mixture models provide useful methods for modeling a wide variety of natural phenomena. Decomposing
a mixture of distributions, however, has many difficulties, including separability of the component distributions,
determination of the number of components, predictability of the clusterswith realistic spatial patterns, and link-
ages between the component density functions and underlying physical processes. In this article, we use princi-
pal component analysis (PCA) to synthesize multiple wireline logs and decompose mixture populations for
lithofacies clustering. The principal components of these logs characterize the rock physics; someof them contain
essential information of lithofacies while others represent less relevant information or noise. Inmany cases, clus-
tering based on one component is effective for decomposing themixture and classifying lithofacies, although ro-
tating principal components is often necessary to improve the lithofacies discrimination. In more complicated
cases, PCA and direct mixture decomposition using histogram can be cascaded to decompose finite mixture
models of a rock property. The proposedmethodology combines the delicacy of probability theory and simplicity
of linear transforms to classify lithofacies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Finite mixture models based on probability distributions provide a
theoretical approach to modeling of a wide variety of random phenom-
ena (McLachlan and Peel, 2000). Mixture models underpin a variety of
statistical methods and play a useful role in neural networks (Bishop,
1995). Unlike traditional clustering analysis, the mixture models are
based on decompositions of a histogram for classifications (Scott,
1992; Silverman, 1986). Althoughmixturemodels provide a convenient
framework, decomposing a mixture of distributions can be difficult in
several fronts, including separability of the component distributions,
determination of the number of components, predictability of the clus-
ters with realistic spatial patterns for geoscience applications, and link-
ages between the component density functions and underlying physical
processes.

In resource characterization, traditional ad hoc methods, such as
using cutoff or gated-logic techniques, are still commonly used for clas-
sifying rock types or lithofacies. These methods are statistically biased
(Ma, 2011; Titterington et al., 1985), which is illustrated by an example
of applying cutoffs on a Gamma Ray (GR) histogram (Fig. 1). The
histogram shows two distinct modes at 62 and 120 API. In the cutoff
method, sandy channel facies are generated from low GR values,
shale-dominated floodplain from high GR values, and crevasse and
splay, typically a mixture of sand and shale, from intermediate GR
values (Fig. 1b). Applying cutoffs is rather arbitrary, creating demarcat-
ing “walls” in the lithofacies-component histograms. Other methods

were proposed for clustering lithofacies using wireline logs, including
clustering analysis (Wolff and Pelissier-Combescure, 1982), and neural
network, with or without using principal component analysis (PCA)
(Ma, 2011; Wang and Carr, 2012). However, these methods do not di-
rectly address the mixture decomposition of frequency distributions.

Although mixture decomposition has not drawn much attention of
geoscientists, researchers have known the importance ofmodelingmix-
tures. Zhu and Journel (1991) simulated amixture of two normal distri-
butions and found that traditional geostatistical methods could go
astray in a mixture of populations. This implies the importance of
decomposing mixture populations prior to geostatistical modeling of
rock properties. They also pointed out that the difficulty of inference
was the main obstacle for broad applications of mixture models to
rock physics and resource evaluation. Indeed, whereas the study by
Zhuand Journel (1991) is forwardmodeling ofmixtures, decomposition
of amixture is an inverse problem, of which inference is more challeng-
ing. Although several methods have been proposed for decomposing a
mixture using histogram, the inference of mixture decompositions to
petrophysical properties is lacking. Fig. 2 shows an example of mixture
decomposition for clustering lithofacies using the kernel density tech-
nique (Chang et al., 2002;Hardle et al., 2004).While the component fre-
quency distributions are quasi-normal – quite reasonable, the predicted
clusters are not satisfactory because of the unrealistic randomness in
spatial patterns of the rock formation.

In this article, we presentmethods for mixture decomposition based
on multivariate analysis of wireline logs. We use principal component
analysis (PCA), combinedwith geologic interpretations, to address infer-
ence problems of themixture models for classifying lithofacies. We first
review the finite mixture-modeling method, followed by presenting
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mixture frequency distributions that are commonly encountered in
wireline logs, including univariate and multivariate frequency distribu-
tions. Typically, thedifferent lithofacies exhibit significant overlaps in in-
dividual wireline logs, but the bias due to the overlaps can be mitigated
by using two or more wireline logs. Because PCA enables synthesizing
the information from multiple logs, it is used to facilitate introducing
geological prior knowledge for clustering lithofacies. Rotating a principal
component allows using several components and weighing their rela-
tive importance. In more complicated cases, PCA and direct mixture de-
composition are cascaded to decompose the mixture.

2. Finite probabilistic mixture models

Finite mixture models can be formulated as a probabilistic distribu-
tion that is a convex combination of several component probabilistic
distributions (McLachlan and Peel, 2000), such as:

g

f xð Þ ¼ Σ ωi f i xð Þ
i¼1

ð1Þ

where g is the number of components, f(x) is themixture density, fi(x) is
the component densities of the mixture, and ω represents the mixing
weights such as:

ωi N 0; and ωi þ…þωg ¼ 1
f j xð Þ ¼ N 0; and
Σ f j xð Þ dx ¼ 1:

For mixtures of univariate normal distributions, Eq. (1) can be
expressed as:

g

f xð Þ ¼Σ ωi Ni μ i;σ ið Þ
i¼1

ð2Þ

where N(μi; σi) is a normal density for each component i and ωi is its
proportional weight.

When their variances are identical, the component distributions are
referred to as homoscedastic; otherwise, they are said heteroscedastic.
For example, a mixture of two normal homoscedastic components has
the form:

f xð Þ ¼ ω1ϕ x; μ1;σ
2

� �
þω2ϕ x; μ2;σ

2
� �

ð3Þ

where ϕ(x; μ, σ) is a normal density with mean μ and standard
deviation σ.

Heteroscedastic mixtures are much more common in practice be-
cause of the different variances in the components of mixtures. The
GR histogram discussed earlier (Fig. 1a) can be decomposed into three
normal or quasi-normal component histograms (Fig. 2a). These include:
channel facies having a normal distribution of N(61.5, 8.6), crevasse-
splay facies having a normal distribution of N(84.2, 10.9), and overbank
facies having a normal distribution of N(117.4, 19.1), respectively.
Therefore, the GR log is a mixture of three heteroscedastic components.
It is noteworthy that the means of the GR in the channel and overbank
facies are slightly different than the two modes because the modes are
impacted by the overlapped GR values in the crevasses-splay.

Normal distributions are often used as kernel densities to analyze
probability mixture distributions. For instance, the following equation

Δ ¼ μ1−μ2j j=σ ð4Þ

is the Mahalanobis distance between the two homoscedastic normal
densities (Titterington et al., 1985). Few studies have been conducted
for measuring separability of heteroscedastic densities. Here, we extend
theMahalanobis distance in Eq. (4) to the heteroscedastic case, such as:

Δ ¼ μ1−μ2j j= 0:5� σ1 þ σ2ð Þ:ð ð5Þ

In other words, the Mahalanobis distance is defined as a function of
the means and their standard deviations of the component distribu-
tions. The greater the difference inmeanbetween the component distri-
butions and the smaller the difference in standard deviations are, the
greater the separation between the component distributions will be.
When it is greater than 3, the separation of the two components is gen-
erally straightforward. On theother hand,when it is less than 1, separat-
ing them can be quite challenging.

The histogram in Fig. 3d shows two distinct modes in the lognormal
scale of a resistivity log and the two components are approximately log-
normal. The Mahalanobis distance based on Eq. (5) with their means
and standard deviations in logarithmic scale from the histogram is
6 (i.e., |0.80 − 0.02| / [(0.18 + 0.08) × 0.5]), and the two component
distributions are separable simply using a cutoff. On the other hand,
the component histograms in Fig. 2a aremuchmore difficult to separate
using the GR log alone. In fact, the Mahalanobis distance is 2.3 (i.e.,
|61.5 − 84.2| / [(10.9 + 8.6) × 0.5]) for the channel and crevasse-
splay distributions based on their means and standard deviations; and
it is 2.2 (i.e., |84.2 − 117.4|/[(10.9 + 19.1) × 0.5]) for the overbank
and crevasse-splay distributions. Moreover, the conditions for appear-
ance of bimodality and separation of the components also depend on
their proportions, i.e.,ω1 and ω2 in Eq. (3). Detail on the boundary con-
ditions for bimodality of normal mixtures can be found in Eisenberger
(1964).

A normal density is commonly found as a component distribution in
natural phenomena, from Gauss' geodesic measurements to Laplace's
analysis of errors of experiments. That explains why it is extensively
used as a kernel density (Chang et al., 2002; Efron and Tibshirani,
1993). The kernel density method is frequency-based in that it fits
the frequency in thehistogramusing kernel densities. However, compo-
nent histograms do not need to be normally distributed. In particular,
decomposition of a mixture using PCA is totally distribution free
(Comaniciu ad Meer, 1999). Moreover, some components can still rep-
resent a mixture of subpopulations, and the mixture may or may not be
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Fig. 1. (a) Histogram of Gamma Ray (GR) log with 21,854 samples from a Cretaceous for-
mation in a RockyMountain basin. (b) Decomposition of the histogram in this figure into 3
histograms based on the GR cutoffs. Color codes: orange, channel facies; green, crevasse-
splay; and black, overbank.
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