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Two categories of gravity inversion methods based on the classification of the inversion results are (i) direct in-
version of the density contrast using a linear or nonlinear algorithm, and (ii) inversion of the source distribution
in a purely probabilistic sense, in which the inversion results are equivalent physical parameters between +1
and −1 that represent the influence or deficit of density relative to the density of the host volume. The second
of these methods is the easier and more stable of the two, but in many cases the density-contrast model is
preferred for the recognition of particular lithologies. Also, the inversion processingmethod requires specific geo-
logical information constraints to be added, both to make the result more meaningful and to offset the inherent
non-uniqueness of the inverted static potential field. The present study extends the scope of the probability to-
mography method by introducing an iterative procedure to directly invert the density. In the proposed method,
the initial model is produced bymultiplying a small density by its probability of occurrence, and then an iterative
method is used to refresh themodel until both forward data and observed data fall within a given errormargin. A
density range restriction for each subdivided rectangular cell is added at each iteration to improve the focusing
effect. Tests of the proposed method using two simple one- and two-prism models showed that the inversion
of gravity data yields meaningful geological results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Gravity inversion is an important tool for retrieving the model
parameters from measured gravity data. It is widely used for mapping
geological structures in tectonic studies, resource exploration and engi-
neering investigations, especially at the reconnaissance stage of these
applications.

Inversion methods have undergone considerable development
in the past decades. One type of gravity inversion is the direct determi-
nation of the three-dimensional subsurface distribution of density con-
trasts and includes both linear andnonlinearmethods. Li andOldenburg
(1998) proposed two such techniques. In the first of these, the gravity
data is transformed into pseudomagnetic data using the Poisson's rela-
tion, and the inversion is carried out using a 3-D general magnetic in-
version algorithm (Li and Oldenburg, 1996). In the second technique,
the gravity data is inverted to recover a minimum structure model,
and the final density distribution is obtained byminimizing amodel ob-
jective function. Nonlinear inversion methods are also widely used in
gravity inversion. Bosch et al. (2006) usedMonte Carlo simulation tech-
niques in gravity inversion. Chasseriau and Chouteau (2003) advocated
3-D inversion of gravity data using an a priori model of covariance.
Shamsipour et al. (2010a,b, 2011) proposed a geostatic inversion

technique for the inversion of gravity data obtained at ground surface
and in boreholes.

The second kind of gravity inversion is probability tomography,
which deals with the subsurface distribution of contrasting densities
in a purely probabilistic sense without external constraints. Probability
tomography was first developed for the analysis of self-potential data
(Patella, 1997a,b) and then extended to geoelectric and electromagnetic
methods (Mauriello and Patella, 1999a,b;Mauriello et al., 1998). Gravity
and magnetic probability tomography imaging have also been devel-
oped as potential methods (Chianese and Lapenna, 2007; Guo et al.,
2011a,b; Mauriello and Patella, 2001, 2005, 2008).

In gravity or magnetic inversion, non-uniqueness of the solution
poses a problem for the mathematical properties of potential fields,
in that many subsurface density or magnetic distributions produce
identical responses. Inversion methods always need to impose con-
straints to help guide the inversion and obtain robust results (Bosh
and McGaughey, 2001; Boulanger and Chouteau, 2001; Fullagar et al.,
2008).

In comparison with methods that directly invert density contrast,
probability tomography of gravity data is simple, stable and readily per-
formed. Since the results are probabilities and not actual density con-
trasts, they take values between −1 and +1; it is also difficult to add
geological constraints in the image processing to overcome the inherent
non-uniqueness and to improve resolution. In this paper, we propose an
iterative method of density contrast inversion that incorporates proba-
bility tomography computation of the mismatch between the observed

Journal of Applied Geophysics 102 (2014) 62–67

⁎ Corresponding author. Tel./fax: +86 1082321331.
E-mail address: liugf@cugb.edu.cn (G. Liu).

0926-9851/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jappgeo.2013.12.012

Contents lists available at ScienceDirect

Journal of Applied Geophysics

j ourna l homepage: www.e lsev ie r .com/ locate / j appgeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jappgeo.2013.12.012&domain=pdf
http://dx.doi.org/10.1016/j.jappgeo.2013.12.012
mailto:liugf@cugb.edu.cn
http://dx.doi.org/10.1016/j.jappgeo.2013.12.012
http://www.sciencedirect.com/science/journal/09269851


gravity data and forward gravity data for a given density model. A
straightforward constraint is also added to the inversion procedure
that restricts the range of inverted density values to yield a geologically
meaningful result.

2. Review of gravity tomography theory

In a reference Cartesian coordinate system (x–y) plane horizontal
and z-axis positive downwards, the subsurface is divided into a large
number of rectangular cells of constant density. Then, we assume
that all gravity reading stations P(x,y,z) are located on the ground
surface at varying elevations |z| above mean sea level. Referring to a
cell q with differential density Δρq with respect to the host material
(Fig. 1a), the Bouguer anomaly Δgq(x,y,z) is written as:

Δgq x; y; zð Þ ¼
GΔρqυq zq−z

� �
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where G is the universal gravitational constant; υq is the volume of a
rectangular cell; andΔρq= ρ1− ρ2 can be positive or negative, depend-
ing on the presence of an anomalous excess or deficit mass in cell qwith
respect to the host volume. Summing all cells Q in the region (Fig. 1b),
the total Bouguer gravity anomaly Δg(xi,yi,zi) is given by:

Δg xi; yi; zið Þ ¼ G
XQ
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where the subscripts i of x, y, z refer to a station point.

For a unit rectangular mass Δρqυq = 1, the Bouguer anomaly is
expressed as:

Δgu xi; yi; zið Þ ¼ G
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q¼1
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Based on the derivation byMauriello and Patella (2001), the probabil-
ity tomography imaging function ηq of a rectangular cell is obtained from:

ηq ¼

XN
i¼1
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where N is the number of station points on the ground surface.
Substituting from Eqs. (3), (4) gives:

ηq ¼
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where:
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Fig. 1. (a) Rectangular cell q of density ρ1 within host volume of density ρ2. (b) Division of subsurface into rectangular cells with constant density value.

Fig. 2. (a) Geological model A consisting of a simple prism. (b) Probability imaging result for model A; the color scales represent probability value between −1 and +1.
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