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A numerical evaluation of the permittivity of sandstones through the micro computerized tomography
(micro CT) images at 1.1 GHz is conducted by using an image porosity extracting algorithm and an
improved Finite Difference Method (FDM). Within the acquired physical properties by 3D micro CT
scanning, numerical method is used to compute the permittivity of the rock samples. A resonant cavity is
used for experimental measurement. The simulated results of 2 clastic sandstone samples with dry state
and saturated state are compared with experimental data for validating the accuracy of the proposed
numerical method. The results show great agreement and the error of permittivity evaluation is less than 3%.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Deterministic models and empirical formulas are methods used in
predicting conductivity, permittivity, porosity, permeability and other
petro-physical properties that define a reservoir (Abou El-Anwar and
Gomaa, 2013; Greeney and Scales, 2012; Hu and Liu, 2000; Knight and
Nur, 1987; Rogers et al., 2011; Shen et al., 1985; Todd and Shi, 2005;
Zeng et al., 2006). However, these methods are created to honor data
measured in specific environments, thus they fail when applied to a
wider range of rocks under different conditions. Especially according
to some researching cases in gas and oil reservoirs recently, it was
seen that the dielectric dispersion can result in huge dielectric constant
enhancement at low frequencies (Asami, 2006; Felix, 2011; Sengwa and
Soni, 2006), which can hardly be measured by any experimental
devices. Based on the effective medium theory, numerous analytic
formulas were developed to compute the effective dielectric constant
of the composite materials that consist of spherical inclusions (Hanai,
1968). However, all these analytic methods could only compute the
composite media with very simple structures (e.g., the inclusion is
spherical or ellipsoidal). For the mixtures which contain cubic or
cylindrical inclusions, there is no analytic formula to compute its
effective dielectric constant so far.

Therefore a new approach is needed to provide an accurate way of
unraveling the physics behind the observed phenomenon which could
be applied to different scenarios. Nowadays, high resolution 3D rock

morphology can be acquired by using micro computerized tomography
(micro CT). This 3D image can be used to numerically calculate desired
physical parameters of the material usually conducted experimentally
over a sample core, such as horizontal and vertical permeability, poros-
ity, etc. (Golab Alexandra and Knackstedt, 2010; Wang et al., 2010).
In this paper, micro CT is used in scanning the rock to determine its
physical properties in 3D. Within the acquired geometry restrictions,
numerical methods are used to compute the electric properties of the
rock at 1.1 GHz to minimize the dielectric dispersion effect. For accu-
rately calculating the electrical properties of composite media with
very fine structures, an improved 3D Finite Difference Method (FDM)
with special gridding principles is needed to handle the membrane
structures. The numerical data is compared and evaluated by measure-
ments done using a resonant cavity. Numerical method confirmation
conducted on homogeneous sandstones will give space for further
research to be conducted on modeling and numerical evaluation of
properties of more complex structures. Moreover, this process will
give us greater degrees of freedom in accessing the different morpho-
logical rock components that are taking part in the physics of the
studied phenomenon without core destruction.

2. Numerical method

In this paper, numerical calculation using Finite Difference Method
(FDM) (Kärkkäinen et al., 2001; Luo, 2009; Luo and Liu, 2010) is
coded for calculating the dielectric constant at 1.1 GHz of micro CT
images of 5 mm diameter rocks. According to Anderson's research
(Anderson et al., 2007), surface redox reactions in the presence of an
external electric field will generate a polarization layer which is
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presented as a membrane structure between grain and pore space
of rock. This phenomenon is thought to exist due to two main
mechanisms: polarization of the double layer at the metallic grains
and polarization of the double layer at insulating grains. The pro-
posed 3D-FDM method is based on a cubic capacitor model under
quasielectrostatic assumptions and periodic boundary conditions,
which can be used to simulate general mixtures and mixtures
with membrane structure. A special FDM grid is introduced to
handle the membrane that coats the inclusions of the composite
medium. For the structure with membranes, it is impractical to
discretize the membrane by general FDM grids, because the thick-
ness of the membrane may be 0.1% or less of the inclusion size.
Fig. 1 shows the special FDM grids used to handle the membrane.
The membrane is placed on the interface of the involved grids.
So the membrane area doesn't need discretization when the FDM
meshes are generated. The thickness and electrical parameters of
the membrane are considered when we calculate the admittance
between the grid points where the membrane presents (Fig. 1(d)).

The cubic subset of the original micro CT image is n × m × k
elements. Each element is a cube with side lengths equal to 3.2 μm,
which is the resolution of the micro CT scanner. The distribution of
the nodes with respect to the cubic elements was done by consider-
ing the center of every element as a node as shown in Fig. 2(a)
and (b). The theory is based on quasi-electrostatic approximation
of Laplace's equation.

∇� J
*¼ ∇ � jωε E

*� �
¼ 0: ð1Þ

with

E
*¼ −∇Φ ð2Þ

where Φ is the electric potential, ε is and permittivity, ω is the
angular frequency, E

*
is the electric field intensity and J

*
is the current

density. Each node has 6 connections with the surrounding 6 nodes
in the neighboring elements. As a result, the total electric current
flowing into a given element from its neighboring nodes is zero.
Finally by applying the finite differences approximation on Eq. (1)
would result in Eq. (3), (15) respectively with boundary conditions
seen in Eq. (17), (20).
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Where I and Y are the current and admittance of each path
respectively, Φ is the electric potential of each node, d is the distance
between each 2 nodes, and σ* is the complex conductivity.

Substituting Eqs. (4) and (15) in Eq. (3) this will result in the
following Finite difference equation:

Φi; j;k ¼
Φi; jþ1;k � Y1 þΦi; j−1;k � Y2 þΦi−1; j;k � Y3

Y1 þ Y2 þ Y3 þ Y4 þ Y5 þ Y6

þΦiþ1; j;k � Y4 þΦi; j;k−1 � Y5 þΦi; j;kþ1 � Y6

Y1 þ Y2 þ Y3 þ Y4 þ Y5 þ Y6
ð16Þ
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Fig. 1. Mesh generation of the inclusion coated by a membrane. (a) The original state
of the boundary; (b) grid the inclusion; (c) place the membrane on the interface of
the grids; (d) the interface with a membrane between node (i-1, j, k) and (i, j, k).
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