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Differential evolution (DE), a population-based evolutionary algorithm(EA) has been implemented to invert self-
potential (SP) and vertical electrical sounding (VES) data sets. The algorithm uses three operators includingmu-
tation, crossover and selection similar to genetic algorithm (GA).Mutation is themost important operator for the
success of DE. Three commonly usedmutation strategies including DE/best/1 (strategy 1), DE/rand/1 (strategy 2)
and DE/rand-to-best/1 (strategy 3) were applied together with a binomial type crossover. Evolution cycle of DE
was realizedwithout boundary constraints. For the test studies performedwith SP data, in addition to both noise-
free and noisy synthetic data sets two field data sets observed over the sulfide ore body in the Malachite mine
(Colorado) and over the ore bodies in the Neem-Ka Thana cooper belt (India) were considered. VES test studies
were carried out using synthetically produced resistivity data representing a three-layered earth model and a
field data set example from Gökçeada (Turkey), which displays a seawater infiltration problem. Mutation strat-
egies mentioned above were also extensively tested on both synthetic and field data sets in consideration. Of
these, strategy 1was found to be themost effective strategy for the parameter estimation by providing less com-
putational cost together with a good accuracy. The solutions obtained by DE for the synthetic cases of SP were
quite consistent with particle swarm optimization (PSO) which is a more widely used population-based optimi-
zation algorithm than DE in geophysics. Estimated parameters of SP and VES datawere also comparedwith those
obtained from Metropolis–Hastings (M–H) sampling algorithm based on simulated annealing (SA) without
cooling to clarify uncertainties in the solutions. Comparison to the M–H algorithm shows that DE performs a
fast approximate posterior sampling for the case of low-dimensional inverse geophysical problems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Geoelectrical methods including self-potential (SP) and direct current
(DC) electrical resistivity based on vertical electrical sounding (VES) tech-
nique are widely used for a wide variety of exploration problems such as
mineral explorations (e.g., Meiser, 1962; Yüngül, 1950, 1954), land-
slides (e.g., Bogoslovsky and Ogilvy, 1977), environmental problems
(Bolève et al., 2011; Park et al., 2007), groundwater investigations
(e.g., Göktürkler et al., 2008; Hamzah et al., 2007), geothermal ex-
plorations (e.g., Drahor and Berge, 2006; Özurlan et al., 2006), cave
detection (e.g., Balkaya et al., 2012; Vichabian and Morgan, 2002) and
archaeological prospection (e.g., Drahor, 2004; El-Qady et al., 1999).

Model parameters of SP and VES anomalies may be estimated by
either local or global optimization methods that have both advantages
and disadvantages relative to each other. Converging to the best-
fitting solutionusing traditional gradient-based local-search optimization
algorithms strongly depend on a good initial guess, while computational-
ly expensive global-search algorithmsusing nature-inspired evolutionary

algorithms (EAs) are not sensitive to the choice of the initial model
(Başokur et al., 2007; Chunduru et al., 1997; Göktürkler, 2011). These al-
gorithms as a sampler do not require a prior model. The only prior infor-
mation for EAs is the search space,which can be enlarged especially in the
presence of noisy data. Thus, they may be preferable to the local ones
since prior information is not generally known (Fernández-Martínez
et al., 2010b). Commonly used global optimization algorithms, which
are based on direct search, include genetic algorithm (GA) (Holland,
1975), particle swarm optimization (PSO) (Kennedy and Eberhart,
1995) and simulated annealing (SA) (Kirkpatrick et al., 1983). GA
(Abdelazeem and Gobashy, 2006), PSO (Monteiro Santos, 2010; Pekşen
et al., 2011) and adaptive SA (ASA) (Tlas and Asfahani, 2008) were
used for the interpretation of SP anomalies. Göktürkler and Balkaya
(2012) performed a comparative study for these three algorithms to in-
vert single SP anomalies caused by somepolarized bodieswith simple ge-
ometries. Additionally, GA (Balkaya et al., 2012; Fernández Alvarez et al.,
2008; Jha et al., 2008), PSO (Fernández Martinez et al., 2010a; Shaw and
Srivastava, 2007) and SA (Dittmer and Szymanski, 1995; Sen et al., 1993)
were applied to invert VES data. Hybrid approaches combining local and
global optimization algorithms were also used by researchers. For in-
stance, Chunduru et al. (1997) used combined local conjugate gradient
(CG) and global very fast SA (VFSA), and Başokur et al. (2007) used GA
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both as a stand-alone and as a hybrid approach together with iterative
damped least-squares, namely Lamarckian inversion.

Differential evolution algorithm (DE), a class of EAs, was introduced
by Storn and Price (1995) for solving a polynomial fitting problem.
The algorithm is generally called as a very simple but very powerful
population-based meta-heuristic algorithm (e.g., Qing, 2009, p. 41).
DE is based on adding a weighted difference between two randomly
chosen individuals from the population to a third one to find out new
individuals in every generation (Storn and Price, 1997). It is similar
to GA that is the most popular EA since DE uses the same genetic oper-
ators for optimization. But, DE uses these operators in a different order
(mutation, crossover and selection) from GA (crossover, mutation and
selection) in the reproduction cycle. In DE, mutation is carried out
before crossover. DE includes ten different strategies: five different
mutation implementations and two crossover operators (binomial
and exponential) for each of them. The algorithm is generally char-
acterized by the features of simplicity, effectiveness and robustness.
Also, it is easy-to-use; and it requires few controlling parameters, and it
has fast convergence characteristic (e.g., Noman et al., 2011; Storn and
Price, 1997). Due to these advantages, it presents awide range of imple-
mentation examples in different areas such as acoustics, biology, mate-
rial science, mechanic, medical imaging, optic, mathematics, physics,
seismology, etc. More details and examples about the implementation
of DE to solve various problems are given in Qing (2009, pp. 41–51).
Even though previous comprehensive studies over both common
benchmark functions and real-world problems have shown that DE
performs better in terms of convergence rate and robustness than the
other EAs mentioned above, it has a very limited implementation in
geophysical data inversion. DE has been used in geophysics for kinematic
location of earthquake hypocenter (Růžek and Kvasnička, 2001); inver-
sion of well-log data (Goswami et al., 2004); stochastic inversion of
post-stack seismic data (Saraswat et al., 2010). Recently, Balkaya and
Göktürkler (2012) and Li and Yin (2012) used DE for quantitative inter-
pretation of self-potential data.

This study aimed to assess implementation of DE for inversion of
geoelectrical data obtained by SP and VES studies. Threemost frequent-
ly usedmutation strategies with the binomial crossover typewere used
in the algorithm. Synthetically produced (i.e., noise-free and noisy) and
two field data sets were considered in the SP implementation. Two
known anomalies obtained over a Malachite mine (Jefferson County,
Colorado) and over the ore bodies in the Neem-Ka-Thana, Rajasthan
cooper belt (India) were used in the test studies. The solutions gen-
erated by DE were also compared with the results obtained by PSO
that has been widely used to tackle geophysical inverse problems.
Classical implementations of both algorithmswere used in the compar-
ison. The VES implementation includes interpretation of a three-layered
synthetic resistivity curve and an example of a field data set from
Gökçeada, Turkey. To clarify uncertainties in the solutions, model
parameters from SP anomalies (electric dipole moment, polarization
angle, depth, shape factor and origin of the anomaly) and VES curves
(resistivity and thickness of the layers) were compared with the results
fromMetropolis–Hastings (M–H) sampling algorithmusing SAwithout
a cooling schedule. Comparison to theM–H algorithm indicates that DE
performs a fast approximate posterior sampling for the case of low-
dimensional inverse geophysical problems. As a result, DE can be con-
sidered as an effective algorithm by yielding compatible solutions
with PSO in the inverse geoelectrical problems.

2. DE algorithm

DE algorithm (Price et al., 2005; Storn, 2008, pp. 1–31; Storn and
Price, 1995) is one of the population-based global optimization algo-
rithms having common sequence steps of an EA. Similar to GA; the
algorithm has two stages including initialization and evolution.
After randomly generating initial population by initialization, popu-
lation evolves from one generation to the next through mutation,

crossover and selection operations until the termination criteria are
reached (Lin et al., 2011). One of the main differences between DE and
GA is that the reproduction is carried out by a differentialmutation before
the crossover. Reproduction cycle to generate individuals for the next
generation is carried out by basic operations of DE as described in the
following sections.

2.1. Initialization

The algorithm begins by creating an initial population of target
vectors consisting of parameters xi,G = (xi,G1 , …,xi,GD ), i = (1, …,Np)
where Np is the population size, D is the number of parameters, G de-
notes the current generation, that is iteration in algorithm, and i is the
index for individuals. The algorithm is initialized by a randomly created
population within a predefined search space considering the upper and
lower bounds of each parameter as follows:

xj
i;G ¼ xj

l þ rand 0;1ð Þ � xj
u−xj

l

� �
; j ¼ 1;2;…;D ð1Þ

where j indicates parameters, l and u indicate lower and upper param-
eter bounds, respectively, and rand() represents a uniformly distributed
random variable in the range of [0,1).

2.2. Mutation operation

This operation is performed after the initialization to create amutant
(donor) vector vi,G = (vi,G1 ,vi,G2 , …,vi,GD ) for each target vector. Table 1
shows the most common mutation schemes used in DE. Considering
the classical approach in DE (the second strategy: DE/rand/1), three dif-
ferent vectors consisting of a base vector (xr1) and twodifference vectors
(xr2 and xr3 ) are randomly chosen from the population. Mutation oper-
ation is then carried out by perturbing the base vector via a difference
vector scaled by a weighting factor F (mutation constant).

In Table 1, xbest,G is the best individual vector in the population at
generation G, and indexes are random and mutually exclusive integers,
and none of them corresponds to the base index i of current target
vector. In order to describe different types of mutation schemes given
in Table 1, a unique notation is generally used: DE/x/y/z, where x indi-
cates how the base vector chosen (rand: vector is randomly selected
and best: vector with the lowest objective function value), y indicates
how many difference vector is added to it and z indicates what type of
crossover method is chosen (i.e., binomial (bin) or exponential (exp))
(Price et al., 2005, p. 47).

2.3. Crossover operation

The trial vector is created bymeans of crossover operation oncemu-
tation operation has been terminated. It is realized between each pair of
target vector (xi,G) and its corresponding mutant vector (vi,G), and can
be simply formulated for the binomial uniform crossover that is widely
used in the literature as shown below.

uj
i;G ¼ vj

i;G if rand 0;1ð Þ≤Cr or j ¼ jrandð Þ;
xj
i;G otherwise;

j ¼ 1;2;…;D

(
ð2Þ

where Cr is a user-defined crossover probability in the range [0, 1],
which controls the fraction of parameter values copied from themutant
vector, and jrand is a randomly chosen integer in the range [1, D] to
provide that the trial vector does not duplicate the target vector
(Mandal et al., 2011; Price et al., 2005, p. 40).
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