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In this work, we propose the application of the wavelet transform analysis in well-logs (radioactivity, resistivity
and sonic) to identify facies. The wavelet transform is applied to a set of well-log data for identifying correlations
between wavelet coefficients and lithofacies sequences. Our results indicate that the scales, in a multiscale anal-
ysis, are related to the rock thickness and depending on the scale used it is possible to identify other particular or
general sequences. The results obtained are compared and corroborated by standard geological procedures for
lithological characterization, indicating that thewavelet analysis provides qualitative guides for the identification
of lithological properties in wells. All our analyses are based on a siliciclastic oil field that belongs to Chicontepec
Formation of the Tampico–Misantla basin in Mexico.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The primary objective in the hydrocarbon reservoir characterization
is the identification of lithofacies, since they can be used to determine
important characteristics of a geologic unit, such as mineral composi-
tion, sedimentary structures, geometry, depositional fabric, fossil con-
tent, and also can be used to infer origin (Crain, 1986; Rider, 1996).
Traditionally, a lithological characterization is performed by directmea-
surements of cores, obtaining detailed information of thewells. Howev-
er, the recovery of cores is expensive, its analysis is time consuming and
its adequate interpretation depends on the experience of a geologist
(Chang et al., 2000). This fact motivates the development of efficient
and low-cost methodologies for the lithological description of wells.
An important alternative is well-log analysis, because well-logs are re-
cords of the geological properties of subsurface rock formations at dif-
ferent depths that are usually recovered in most wells. Although well-
log analysis is a useful tool for the lithological description of wells, the
inherent complexity of the signals (e.g., pressure, saturation and types
of fluids, size and form of pores)makes well-log interpretation not sim-
ple. Traditional techniques for well-log analysis (e.g., visual inspection)
are not systematic and depend on the experience of the interpreter, and
therefore can generate multiple interpretations (Lee et al., 2002; Tang
andWhite, 2008). To discriminate the impact of these subjective differ-
ences, many computational algorithms have been recently proposed for
automatic lithofacies identification. The most important of these are
multivariable statistic and artificial intelligence methods (Chang et al.,

2000; Chikhi et al., 2005; Delfiner et al., 1987; Enikanselu and Ojo,
2012; Tang andWhite, 2008). Although thesemethods show an impor-
tant progress in automatic lithofacies prediction, they are not systematic
(i.e., require parameter tweaking that depends on the interpreter's ex-
perience) and require a large amount of data, which is not always
available.

Signal processing techniques also have been proposed for geophys-
ics series analysis, such as Fourier analysis (Weedon, 2003),Wash trans-
form (Lanning and Jonson, 1983; Maiti and Tiwari, 2005), fractal and
multifractal analyses (Dashtian and Jafari, 2011; Hernandez-Martinez
et al., 2013; Khue et al., 2002). Particularly, the wavelet transform has
been widely used in geophysics analysis of data-series (Bolton et al.,
1995; Guyodo et al., 2000; Jiang et al., 1997; Prokoph and Veizer,
1999; Torrence and Webster, 1999). For instance, Panda et al. (2000)
used the wavelet transform for permeability data analysis, finding that
the multiscale analysis provides guides for the determination of layer
boundaries, faults, and fractures. Prokoph and Agterberg (2000) applied
wavelet analysis to gamma ray logs to establish a correlation between
differentMilankovitch cycles, concluding that climatic cycles are an im-
portant factor in deposition. Alvarez et al. (2003) proposed the litholog-
ic characterization of wells by the interpretation of wavelet coefficients
and the energy of thewavelet transform. They used gamma ray logs and
seismic traces of different wells, finding that the wavelet energy distri-
bution corresponding to wells in sandstones is significantly different
to those of thewells on gravel. Other authors have usedwavelet analysis
to determine fractal parameters in different well-logs, finding that a
lower fractal dimension can be associatedwith sands and a greater frac-
tal dimension to shales (Briqueu et al., 2010; Lopez and Aldana, 2007).
The wavelet transform combined with other data-series analysis tech-
niques has also been used. For instance, Pan et al. (2008) analyzed
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spontaneous potential and gamma ray log data by the combination of
thewavelet transform and Fourier analysis. They found that thewavelet
coefficients reconstructed by Fourier analysis of gamma ray and sponta-
neous potential signals allow to identify formation boundaries. How-
ever, an important disadvantage is that the identification of the
boundaries depends on the intensity fluctuations of well-log signals.
Arabjamaloei et al. (2011) used a wavelet transform filter to identify
changes in trends of the well-log signals that were related to lithology
changes. To determine the most important changes an artificial neural
network was incorporated, allowing the identification of the formation
boundaries. Recently, Chandrasekhar and Eswara-Rao (2012) applied
wavelet analysis to determine space-localization of the oil and/or gas
formation zones. They analyzed different wavelets finding that the
Gaussian function provides the best results for the identification of for-
mation boundaries.

Therefore, several studies have demonstrated that the wavelet
transform analysis exhibits qualitative clues for reservoir characteriza-
tion. In this work,we present the application of wavelet transform tech-
nique towell-logs for lithologic characterization of a siliciclastic oil field.
We have applied differentwavelet-types to radioactivity, resistivity and
sonic logs of wells belonging to the Chicontepec formation, Mexico.
First, an exploratory analysis using different wavelet-types was carried
out, identifying the wavelet-type most adequate for the well-log analy-
sis. The wavelet scalogram and wavelet decomposition at different
levels were applied to well-log signals in order to identify lithological
properties. Our results indicate that the wavelet analysis provides reli-
able information about of lithological properties of the well, indepen-
dently of the log that was analyzed. All results were compared and
calibrated by standard geological procedures using well-log and core
information.

2. Methodology

2.1. Wavelet transform

The usage of wavelet transform multiscale analysis applied to data-
series has an important tradition in earth sciences (Bolton et al., 1995;
Capilla, 2006; Guyodo et al., 2000; Jiang et al., 1997; Li et al., 2013;
Prokoph and Veizer, 1999; Torrence and Webster, 1999). The principal
aim of wavelet analysis is to determine the content of frequencies, in
both scale and time, of the nonstationary signal. Such transformations
are possible by using different shapes and sizes of functions called
wavelets. A wavelet function is represented by

ψu;s xð Þ ¼ 1ffiffiffiffiffiffi
sð Þp ψ

x−u
s

� �
; uN0; s∈R ð1Þ

where the function ψ is called the mother wavelet, s is the scale factor,
that determines thewavelength, and u represents the shift of thewavelet
(Goupillaud et al., 1985). In the wavelet transform, the signal analyzed is
convolved with the mother wavelet and the transformation is computed
for different segments of the data by means of the variation of s and u. A

wavelet transform where shifts and dilations are continuously varied is
called a continuous wavelet transform (CWT) (Goupillaud et al., 1985).
CWT is a convolution of the signal f(x) with a set of functions generated
by the mother wavelet ψ and it is given by
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On the other hand, the transformation where the variations are rep-
resented by powers of an integer n (usually in dyadic increase) is called
a discrete wavelet transform (DWT) (Daubechies, 1988). In the discrete
domain, the scale and shift parameters are discretized as u = u0

m and
s = ns0, and the resulting wavelets are also discretized as

ψm;n xð Þ ¼ u−m=2
0 ψ

x−ns0
um
0
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wherem and n are integer values. The discrete wavelet transform is de-
fined as

DWT f m;nð Þ ¼
Z ∞

−∞
f xð Þψm;n xð Þdx: ð4Þ

The matrix of the wavelet coefficients, CWTf(u,s) or DWTf(u,s),
is called the scalogram which indicates the frequency localization
to different scales and time. For its interpretation, the scalogram
is charted in a color scale that represents the magnitude of wavelet
coefficients. For computing the wavelet coefficients is selected a

Fig. 1. Block diagram for decomposition into three levels of a signal.
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Fig. 2. Schematic map of the localization of Chicontepec formation.
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