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In the present work the effective elastic moduli of a rock containing one ormore systems of parallel inclusions of
3D-ellipsoidal shape were calculated. The calculations were performed for the conditions of constant strain and
stress at infinity. The results were obtained for non-interacting inclusions (low concentration). The presence of
movable fluid in the rock is described by the universal Gassmann relations for an anisotropic medium. The com-
parison of the results obtained with the experimental data has shown that it is possible to apply the proposed
calculation technique for the determination of elasticmoduli and acousticwaves' velocities in rocks, for example,
for double-porosity carbonate formations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The determination of elastic parameters of rocks by their microstruc-
ture data is one of the most important problems of petrophysics and
physics of rocks. There exists a variety of different calculation methods
from empirical models to direct modeling by numerical methods of the
processes of elastic wave propagation in a rock of given microstructure.
Nowadays the optimal methods for the solution of the inverse problem
of the interpretation of geophysical measurement data are the effective
medium methods. On the one hand, these methods allow considering
the geometry of inclusions that the empirical methods don't; on the
other hand, they don't require as much computational resources as the
methods based on direct numerical solution of the equations of continu-
ummedium mechanics.

A review of the micromechanical methods for the calculation of
elastic properties of composite materials is given in the following
monographs (Kanaun and Levin, 2008; Nemat–Nasser and Hori, 1998),
and the applications of these methods in the physics of rocks are given,
for example, in Zimmerman (1991), Berryman (1995), Grechka and
Kachanov (2006).

An approach based onmicromechanical methodswas applied to the
modeling of the physical properties of carbonate rocks with double
porosity (Kazatchenko et al., 2006a) and the solution of the inverse
problems of petrophysics (Kazatchenko et al., 2006b).

As a rule, during the modeling of elastic properties of cracked
rocks by micromechanical methods it is assumed that the cracks are
penny-shaped, while the concentration of cracks in a unit volume is

characterized by a dimensionless parameter — crack density. In fact
the most popular models in geophysics are the Hudson (1990) and
Thomsen (1995) models and non-interacting inclusion model (Sayers
and Kachanov, 1995), which are applicable for crack-like inclusions
with “soft” filling. Generally, the calculations of these models are per-
formed for parallel penny-shaped inclusions that lead to effective trans-
versely isotropic medium. An interesting inclusion-based anisotropic
poroelasticity model is presented by Xu (1998). Unlike many other
authors Xu has not used the dry rock framemoduli as input parameters,
but he has calculated them from the pore parameters and properties
of the matrix and fluid. The calculations have been performed for
spheroidal inclusions (Xu, 1998) and the conditions of constant load
and displacement.

Meanwhile, existing experimental data show that, for example,
cracked granites are characterized by hexagonal anisotropy. Many
inclusions in rocks have finite volume and complex shape (Fig. 1), so
the calculations of the physical properties of rocks are realized more
adequately in the terms of volumetric concentration than in the terms
of crack density. Exactly, the volumetric concentration of inclusions is
of major interest during the data treatment of petrophysical measure-
ments in the solution of the problems of oil and gas physics and hydro-
geology. As a rule, in natural rocks the volumetric concentration of vugs
and cracks (the secondary pores) isn't high that allows us to use
relatively simple micromechanical methods developed for low inclu-
sion concentrations.

In the presentwork the calculations of the elastic properties of rocks
containing non-interacting inclusions represented by 3D-elipsiods are
given. This model is more general than the conventional model of
spheroidal inclusions.

The calculations were performed for the systems of inclusions filled
with fluids or elastic materials. The comparison of the results with
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existing experimental data for rocks containing systems of oriented
cracks or similar inclusions was performed.

2. Model description

Let us consider an elastic medium (matrix) that is described by the
elastic moduli tensor C or the compliance tensor D, so that the relation
between the stress σij and strain εij = (ui,j + uj,i) / 2 tensors, where ui
are the displacement vector components, takes the following form:

σ ij ¼ Cijklεkl; ð1Þ

εij ¼ Dijklσkl; ð2Þ

where the summation over the repeated subscript k and l is implied.
Ellipsoidal inclusions described by the elastic moduli tensor Cα

or the compliance tensor Dα are embedded in this matrix. In
order to obtain expressions for the effective compliance of the
medium with inclusions let us use the exact geometric relations
(Kanaun and Levin, 2008; Nemat-Nasser and Hori, 1998):

D−D
� �

: σ0 ¼
XN

α¼1
f α D−Dα� �

: σα; ð3aÞ

or in the component form

Dijkl−Dijkl

� �
σ0kl ¼ ∑N

α¼1 f α Dijkl−Dα
ijkl

� �
σkl

α; ð3bÞ

where σα ¼ bσ0 þσdNα , σ0 is the given uniform stress field; σd

are the perturbations introduced to this stress field by inclusions;
D is the effective compliance tensor to be found, fα is the concen-
tration of the αth inclusion. If the inclusion concentration is low
enough, the average stress for each inclusion is approximated as
a uniform stress of an isolated inclusion placed in a matrix with
given stress tensor σ0 at infinity.

Let us introduce a tensor Aα = (C − Cα)−1 : C; we can write for an
isolated inclusion of α type:

εα ¼ bε0 þ εdN ¼ Aα
: Aα−Sα
� �−1

: ε0; ð4Þ

where εα is the average strain of each inclusion; Sα is the Eshelby tensor
(Eshelby, 1957) of a single inclusion.

The explicit expressions for the components of the Eshelby tensor
are given in Appendix A.

Expressing the strain tensor ε0 through the far field stress tensorσ0,
it is obtained:

σα ¼ Cα
: Aα

: Aα−Sα
� �−1

: D : σ0: ð5Þ

Inserting the expression (5) into (3a) and (3b) we obtain:

D−D
� �

: σ0 ¼
XN

α¼1
f α D−Dα� �

: Cα
: Aα

: Aα−Sα
� �−1

: D

)
: σ0:

(
ð6Þ

As the last equality should be fulfilled independently from the
magnitude of the given tensor σ0, it follows from (6) that the final
expression for the calculation of the elastic compliance of the medium
with ellipsoidal inclusions is:

D ¼ I þ
XN

α¼1
f α Aα−Sα
� �−1

)
: D;

(
ð7Þ

where Iijkl ¼
δijδkl þ δikδjl

2 ;δij is the Kronecker symbol. It should be
noted that in the case of very flat empty inclusions Eq. (7) leads
to the Kachanov (1993) and Sayers and Kachanov (1995) results
for the so-called non-interacting approximation.

In the case of the macrostrain ε0 given at infinity, the average
strain tensor within an inclusion is approximated by the defor-
mation tensor in a single inclusion within an elastic body with
properties of the matrix and by substituting this expression to a
deformation field ε0. In this case the effective elastic moduli ten-
sor C is described by the following expression:

C ¼ C : I−
XN

α¼1
f α Aα−Sα
� �−1

)
:

(
ð8Þ

In the case of isotropic matrix and inclusions the components of the
tensors D and C (we will consider in this paper only this case) are:

Cijkl ¼ λδijδkl þ μ δikδjl þ δilδjk
� �

;

Cα
ijkl ¼ λαδijδkl þ μα δikδjl þ δilδjk

� �
;

ð9Þ

Dijkl ¼ −1
2

λ
μ 3λþ 2μð Þ δijδkl þ

1
4μ

δikδjl þ δilδjk
� �

;

Dα
ijkl ¼ −1

2
λα

μα 3λα þ μαð Þ δijδkl þ
1

4μα δikδjl þ δilδjk
� �

;

ð10Þ

where λ,μ and λα,μα are the Lame constants of the matrix or inclusions,
respectively.

The most difficult part of the calculations by the formulas (7)
and (8) is in operation of a 4th rank tensor inversion. In order
to execute this operation we have used the transformation of a

Fig. 1. Example of a double-porosity carbonate rock.
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