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Deconvolution is an important part of seismic processing tool for improving the resolution. One of the key as-
sumptionsmade inmost deconvolutional methods is that the seismic data is stationary. However, due to the an-
elastic absorption, the seismic data is usually nonstationary. In this paper, a novel nonstationary deconvolution
approach is proposed based on spectral modeling and variable-step sampling (VSS) hyperbolic smoothing. To fa-
cilitate ourmethod, firstly, we apply the Gabor transform to perform a time-frequency decomposition of the non-
stationary seismic trace. Secondly, we estimate the source wavelet amplitude spectrum by spectral modeling.
Thirdly, smoothing the Gabor magnitude spectrum of seismic data along hyperbolic paths with VSS can obtain
the magnitude of the attenuation function, and can also eliminate the effect of source wavelet. Fourthly, by as-
suming that the source wavelet and attenuation function are minimum phase, their phases can be determined
by Hilbert transform. Finally, the estimated two factors are removed by dividing them into the Gabor spectrum
of the trace to estimate the Gabor spectrum of the reflectivity. An inverse Gabor transform gives the time-
domain reflectivity estimate. Tests on synthetic and field data show that the presented method is an effective
tool that not only has the advantages of stationary deconvolution, but also can compensate for the energy absorp-
tion, without knowing or estimating the quality factor Q.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As seismic techniques move more from exploration to hydrocarbon
development and production, the need for high-resolution seismic data
becomesmore acute (Jia et al., 2004). Deconvolution has been an essen-
tial tool for the construction of high-resolution seismic images. Most
conventional deconvolution methods, like Wiener or predictive
deconvolution, are based on a simple model that the wavelet does not
change with traveltime. Actually, when seismic waves propagate
through the earth subsurface, the absorption and dispersion effects
will cause attenuation of wave amplitudes and shape distortion of seis-
mic waveforms. Therefore, seismic data is nonstationary.

The nonstationarity of seismograms is addressed by many authors,
whose studies generally fall into two distinct categories, depending on
whether the quality factor (Q) is required or not. One category is inverse
Q filteringwhich requires prior knowledge of Q, the other is nonstation-
ary deconvolution without knowing Q.

For the first category, Hale (1981, 1982) found that the inverse Q fil-
tering overcompensated the amplitudes for the later events in a seismic

trace. In order to obtain reasonable amplitude, he proposed Q adaptive
deconvolution algorithm, but the result was not desired. Hargreaves
and Calvert (1991) pointed out that Robinson's (1979) frequency-
domain rescaling and interpolation method was analogous to the Stolt
(1978) migration algorithm, and developed an inverse Q filtering ap-
proach. According to the model presented by Kjartansson (1979), Pei
and He (1994) derived an inverse Q filteringmethod, which could com-
pensate the amplitude and correct the phase distortion, but it is applica-
ble only to the data with high signal-to-noise (SNR).Wang (2002, 2004,
2006) presented a stable inverse Q filtering method for constant inter-
val Q models with variable Q values, which could effectively and stably
compensate for both amplitude and phase. Zhang and Ulrych (2007) in-
troduced the least squares approach and Bayesian theory into the in-
verse Q filtering and obtained good results. Wang et al. (2008)
developed an inverse Q filtering in time domain to improve calculation
efficiency. Yan and Liu (2009) extended a stable and effective poststack
inverse Q filtering to the prestack data. Wang (2011) developed a new
attenuation compensationmethod based on inversion theory. The com-
mon drawback of thesemethods is that they need to knowQ accurately.
Therefore, these methods have some limitations in practical applica-
tions because Q estimation is challenging in field data.

For the second category, Clarke (1968) proposed a nonstationary
convolutional model based on optimal Wiener filtering. Griffiths et al.
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(1977) developed a time-adaptive prediction filtering that was effective
in removing multiples. Koehler and Taner (1985) introduced a general
mathematical theory of time-varying deconvolution, and showed it to
be equivalent to a multi-channel process. Unlike the stationary model
of a seismic trace, Margrave (1998) presented a nonstationary convolu-
tion model which addressed the earth attenuation. Then Margrave and
Lamoureux (2001) developed a nonstationary deconvolution using
Gabor transform. Margrave et al. (2004) presented a nonstationary
deconvolution technique, called hyperbolic smoothing, to suppress the
amplitude equalization effect. Montana andMargrave (2005) improved
the performance of Gabor deconvolution by phase correction. Margrave
et al. (2011) introduced theGabor transform, based on a complete set of
windows, and developed a Gabor-domain deconvolution algorithmby a
spectral smoothing technique.

In this paper, we propose a nonstationary deconvolution algorithm
based on spectral modeling (Rosa and Ulrych, 1991) and variable-step
sampling (VSS) hyperbolic smoothing. Unlike the conventional hyper-
bolic smoothing method, we estimate the source wavelet by spectral
modeling at first, and then smoothing the Gabor magnitude spectrum
of seismic data along hyperbolic paths with VSS can obtain the magni-
tude of the attenuation function, and can also eliminate the effect of
source wavelet. Finally, we applied our new method to both synthetic
and real data.

2. Method and theory

2.1. Gabor transform

The forward Gabor transform of a time-domain signal s(t) is defined
as (Gabor, 1946)

Sg τ; fð Þ ¼
Zþ∞

−∞

s tð Þg t−τð Þe−2πiftdt; ð1Þ

where g(t) is theGabor analysiswindowand τ is the locationof thewin-
dow center. Given Sg(τ, f), the signal can be reconstructed to form the
expression

s tð Þ ¼
Zþ∞

−∞

Zþ∞

−∞

Sg τ; fð Þγ t−τð Þei2πftdfdτ; ð2Þ

where γ(t) is the Gabor synthesis window. The analysis and synthesis
windows must satisfy the condition

Zþ∞

−∞

g tð Þγ tð Þdt ¼ 1: ð3Þ

To simplify, let γ(t) = 1. That is, it is possible to choose a set of
Gaussians such that

X
k∈z

g t−kΔτð Þ≈ 1; ð4Þ

where

g t−kΔτð Þ ¼ Δτ
T

ffiffiffi
π

p e− t−kΔτ½ �2T−2

; ð5Þ

with T being the Gaussian half width and Δτ being the spacing between
Gaussians.

2.2. Nonstationary convolutional model

The stationary theory is based on a stationary convolutional model
of a seismic trace that is often written

s tð Þ ¼ w tð Þ � r tð Þ≡
Z∞

−∞

w τð Þr t−τð Þdτ; ð6Þ

where w(t) is the seismic wavelet and r(t) is the reflectivity.
From the Eq. (6) above, the seismic wavelet does not evolve with

time. This means that the wavelet is stationary. Actually, when seismic
waves propagate through the earth subsurface, the absorption of the
medium will cause attenuation of the wave amplitudes and shape
distortion.

Margrave (1998) presented a trace model that included the source
waveform and the nonstationary effects of dissipation as predicted by
the constant-Q model (Futterman, 1962). Firstly, the effect of constant
Q can be modeled as

sQ tð Þ ¼
Z∞

−∞

Z∞

−∞

αQ τ; fð Þr τð Þe2πif t−τ½ �dτdf ; ð7Þ

where r(τ) is the reflectivity and the constant-Q attenuation function is

αQ τ; fð Þ ¼ e
−πfτ=Q

þiH πfτ=Q

� �
; ð8Þ

where H denotes the Hilbert transform. Eq. (7) can be understood as a
nonstationary convolution by noting that the f integral can bewritten as

aQ τ; t−τð Þ ¼
Z∞

−∞

αQ τ; fð Þe2πif t−τ½ �df ; ð9Þ

so that

sQ tð Þ ¼
Z∞

−∞

aQ τ; t−τð Þr τð Þdτ: ð10Þ

As defined by Eq. (7), sQ models dissipation for an impulsive source.
For a more general source, we simply apply it with a stationary convo-
lution and write our final nonstationary trace model as

S fð Þ ¼ W fð Þ
Z∞

−∞

αQ τ; fð Þr τð Þe−2πifτdτ; ð11Þ

whereW and S are the Fourier transforms of the source and the nonsta-
tionary seismic trace respectively.

Finally, Margrave et al. (2004) applied the Gabor transform in
Eq. (11) and derived an asymptotic result as

Sg t; fð Þ≈W fð ÞαQ t; fð ÞRg t; fð Þ: ð12Þ

As shown above, Sg(t, f) and Rg(t, f) are the Gabor transform of non-
stationary trace and the Gabor transform of the reflectivity separately.

2.3. Gabor deconvolution algorithm

As in stationary deconvolution, one of the main steps is wavelet es-
timation from the seismic data. The accuracy of the wavelet is directly
related to the accuracy of the deconvolution. In nonstationary
convolutional model, nonstationary wavelet is composed of source
wavelet and attenuation function.
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