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In this paper, three independent Earth gravitymodels (EGMs) of GO_CONS_GCF_2_TIM_R4, AIUB-GRACE03S and
ULux_CHAMP2013s are combined to degree and order 120. The geoid models of these EGMs are computed and
compared with the Global Positioning System (GPS) and levelling data over Fennoscandia. We found that the
simple mean of these geoid models is closer to the GPS/levelling data than their weighted mean. This means
that errors of the EGMs are not properly estimated as they are used in the weighted mean solution. We develop
a method based on solving a nonlinear condition adjustment model to calibrate the errors so that the result of
weighted mean becomes the same as that of the simple mean. Numerical results show slight changes in the
errors of GRACE03S but large ones in those of GO_CONS_GCF_2_TIM_R4 and ULux_CHAMP2013s. Furthermore,
the weighted mean solution considering the calibrated errors and some additional constraints is better than
GOCO03S to degree and order 120 over Fennoscandia.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Challenging Mini-satellite Payload (CHAMP) (Reigber and
Schwintzer, 2000), the Gravity Recovery and Climate Experiment
(GRACE) (Tapley et al., 2005) and the Gravity Field and Steady-state
Ocean Circulation Explorer (GOCE) (ESA, 1999) are three recent satellite
gravimetry missions. In the CHAMP mission the high–low satellite-to-
satellite tracking (SST) data between the CHAMP and global positioning
system (GPS) satellites were analysed and different versions of the
Earth's gravity models (EGMs) were presented based on such analysis.
In the GRACE mission twin-satellites, more or less in the same orbit,
follow each other and the distance between them is measured continu-
ously. This type ofmeasurements is called low–low SST and by combing
them and the high–low SST data to the GPS satellites the orbit of the
GRACE satellites are precisely determined and analysed for recovering
EGMs. In the GOCE mission a new measurement technique is used
which is so-called satellite gravity gradiometry. In fact GOCE observa-
tions are second-order derivatives of the Earth gravitational potential
and recovering higher frequencies of the gravity field are expected
from this mission. The orbit of GOCE is determined based on high–low
SST data to the GPS satellites as well. For a good overview of analysing
theGOCEdata see Pail et al. (2011). Since the quality of longwavelength
structure of the GOCE EGM is not very good, they are combinedwith the
GRACE data which resulted to the combined GOCE–GRACE EGMs, for
example GOCO01S (Pail et al., 2010), GOCO02S (Goiginger et al.,
2011) and GOCO03S (Mayer-Gürr et al., 2012) were computed based
on this strategy.

So far various EGMs have been presented based on these three
missions and their combinations. Here we refer the readers to http://
icgem.gfz-potsdam.de/ICGEM/modelstab.html to see a list of them.
Today, the concentrations of the geodetic researchers are on the
evaluation of the GOCE data. Hirt et al. (2011) compared some of
GOCE EGMs with terrestrial gravimetric data over Switzerland, Austria
and astrogeodetic deflections over Europe. They observed some
improvements between degrees 160–165 and 180–185. Gruber et al.
(2011) compared some of the GOCE EGMs for reproducing the orbit of
GRACE and concluded that they do not outperform the GRACE orbit;
therefore, combination of GRACE and GOCE data is useful. They found
significant improvements between degrees 50 and 200 for geoid
computation goal. Janak and Pitonak (2011) evaluated the GOCE
products in central Europe and Slovakia. They mentioned that TIM2
and SPW2 to degree 210 are much better than the previous releases to
the same degree and GOCO02S has a significant improvement com-
paring to GOCO01S. Sprlak et al. (2012) did the same study in Norway
and mentioned that the direct solutions are highly affected by a priori
information and time-wise solution is more reliable. Abdalla et al.
(2012) evaluated the GOCE EGMs in Sudan and concluded that the
SPW1, SPW2, TIM1, TIM2 and GOCO01S are consistent with the local
data. Abdalla and Tenzer (2012) validated EGMs in New Zealand.
Guimaraes et al. (2012) tested the EGMs in Brazil and found out that
TIM3 is much better than the previous ones, as expected. Eshagh and
Ebadi (2013) also investigated different EGMs and evaluated them
over Fennoscandia. So far evaluation of the GOCE EGMs was done
based on comparison of the EGM products with external sources
of data, like gravity anomaly, disturbing gravity, geoid and/or
astrogeodetic deflections. However, it should be considered that the
errors of EGMs have been also presented. Wanger and McAdoo (2012)
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noticed that the errors of GOCE EGMs are not realistic and tried to
calibrate them based on EGM08 (Pavlis et al., 2008, 2012). Eshagh
(2013) studied the reliability and calibration of GOCE models as well.

In this paper we select and combine GO_CONS_GCF_2_TIM_R4
(TM4) model (Pail et al., 2011) delivered from analysis of the GOCE
data, AIUB-GRACE03S (GRC) (Jäggi et al., 2011) computed from the
GRACE data, ULux_CHAMP2013s (CMP) (Weigelt et al., 2013) which is
the new EGMof derived from the CHAMP. In order to do better compar-
ison we will compare the result of our combined EGM with GOCO03S
(GOC). Here, we compare the simple and weighted mean values of
these three EGMs and compare their geoid models to the Global Posi-
tioning System (GPS) and levelling data over territory of Fennoscandia.
Furthermore, a new strategy is presented for calibration of the errors of
EGMs based on a nonlinear condition adjustment model. This strategy
will be used for computing a new combined EGM from CMP, GRC and
TM4 to degree and order 120 and it is implementable once the new
EGMs of the mentioned missions are available.

2. Spherical harmonic expression of geoid

Let the following be the well-known spherical harmonic expansion
of the geoid (Heiskanen and Moritz, 1967, p. 88):

N ¼ GM
Rγ

XL
n¼2

kn
R
r

� �nþ1 Xn
m¼−n

tnmYnm θ;λð Þ ð1aÞ

where GM is the geocentric gravitational constant, R the semi-major
axis of the reference ellipsoid, r the geocentric distance of the points at
which the geoid is computed, γ the normal gravity, tnm the spherical
harmonic coefficients of the disturbing potential, and Ynm(θ, λ) the
fully-normalised spherical harmonics of degree n and order m at a
point with co-latitude and longitude of θ and λ. L stands for the maxi-
mum degree of the EGM. In order to somehow consider the errors of
EGMs we can use the following coefficient which is in fact the Wiener
filter:

kn ¼ cn
cn þ dcn

ð1bÞ

where cn and dcn are respectively, signal and error degree variances of
the EGM with the following expressions:

cn ¼
Xn

m¼−n
t2nm and dcn ¼

Xn
m¼−n

δt2nm ð1cÞ

and δtnm stands for the error of tnm.
The quality of the spherical harmonic coefficients of the Earth gravity

field is deteriorated by increasing the degree of the field and kn will try
to filter the high degree coefficients based on their presented errors. It
will not have any significant impact on the result if the spectral errors
(dcn) are considerably smaller than the signal (cn). Nevertheless, judg-
ing about the quality of the spherical harmonic coefficients and their er-
rors is not straightforward unless the resulted geoid models or gravity
anomalies are compared to external sources of information like GPS/
levelling data or terrestrial gravity anomalies.

3. Comparison of Earth gravity models

Comparison of one existing EGM with another can be a simple way
to see how different they are. In statistical point of view, the mean
value of EGMs should be closer to the true EGM in the presence of no
systematic error. Simple andweightmeans can be considered as simple
estimators for combining EGMs. However in order to see how far their
results are from the true EGM they should be compared with the exter-
nal and independent source of information. The problem which is
discussed now is related to the case where the simple mean (SMN)

delivers better results than the weighted mean (WMN). Therefore, we
can conclude that the presented errors for the EGMs are not realistic.
Finding the incorrect weights of the coefficients of each EGM is not
straightforward. Nevertheless, these weights can be adjusted at least
to get the same result as that of the SMN. To do so, a condition equation
should be organised in such a way that it equates theWMN to the SMN.

Mathematically this idea can be written in the following form:
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where i stands for the index number of each EGM and N is the total
number of them, tnmi is the spherical harmonic coefficient of ith EGM
and pnm

i = 1/(σnm
i )2 is the weight of the coefficients in which σnm

i is
the error of each coefficient.

The unknowns of Eq. (2a) are pnm
i which should be estimated but

Eq. (2a) is nonlinear with respect to them the equation should be
linearised:
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pnm
i,0 stands for the initial weights and in the matrix form we have

BΔp ¼ Δl ð2dÞ

where B is the coefficient vector of theweights,Δp vector of corrections
to theweights andΔl is themis-closure value or the difference between
the SMN and WMN solutions. B and Δp have the following structures:
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In our case where we have three EGMs, after further simplifications,
B becomes:

B ¼
"
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Since the condition model was linearised it should be applied
iteratively. Therefore the minimum norm estimation of Δp is:

fΔpkþ1 ¼ BT
k BBT

k

� �−1
Δlk ð2hÞ
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