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The heterogeneous distribution of fluids in patchy-saturated rocks generates significant velocity dispersion
and attenuation of seismic waves. The mesoscopic Biot–Rayleigh theory is used to investigate the relations
between wave responses and reservoir fluids. Multiscale theoretical modeling of rock physics is performed
for gas/water saturated carbonate reservoirs. Comparisons with laboratory measurements, log and seismic
data validate the rock physics template. Using post-stack and pre-stack seismic inversion, direct estimates
of rock porosity and gas saturation of reservoirs are obtained, which are in good agreement with oil production
tests of the wells.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, major targets of seismic exploration for oil/gas resources
have been gradually shifted to highly heterogeneous reservoirs in com-
plex geological environments. The combined analysis of multiscale
wave data,which includes surface seismic data (101–2 Hz), vertical seis-
mic profile data (101–3 Hz), sonic logs (103–4 Hz) and laboratory mea-
surements (101–6 Hz), is useful for the detection of gas in complex
heterogeneous reservoirs, since information at different spatial and
frequency scales is available.

The mechanism of wave-induced local fluid flow, which is closely
related to themesoscopic heterogeneity of pore structures andfluid dis-
tributions in reservoirs, is known to induce significant velocity disper-
sion and attenuation of seismic waves (Ba et al., 2008a, 2011; Müller
and Gurevich, 2005; Müller et al., 2010). Actually, the compressional
wave velocity, which is obtained from measurements at different
scales (Sams et al., 1997), is frequency-dependent as predicted by this
mechanism.

Wave propagation in patchy-saturated media plays an important
role in the study of multiscale wave data of gas reservoirs. Frequency-
dependent P-wave velocity and attenuation can be predicted and relat-
ed to the mineral and fluid properties (Dutta and Seriff, 1979; Johnson,
2001; Müller and Sahay, 2011; White, 1975). Therefore, application of
the patchy-saturation theory to heterogeneous gas reservoirs has the
potential of improving the use of multiscale wave data to improve the

performance of hydrocarbon detection. However, mesoscopic wave
theories still need further experimental validation and tests for practical
applications.

Rock-physics models have been applied by Xu and White (1995),
Goodway (2001) and Avseth et al. (2005) to sandstone reservoirs. Xu
and Payne (2009) extended the Xu–White model, which was origi-
nally designed for clastic rocks, to carbonate rocks and their predic-
tions are in good agreement with measurements. Generally, there
are three steps in traditional rock-physics modeling: (1) Obtain the
properties of grain minerals with mixing laws or effective medium theo-
ries; (2) Use of effective-medium theories, empirical relations or experi-
mental measurements to estimate the elastic properties of the dry-rock
matrix; (3) Fluid substitution. The latter is mostly treated with the
Wood law and Gassmann's equations. Since the Gassmann–Wood
method neglects patchy heterogeneities, a non-dispersive frequency-
independent P-wave velocity is modeled. Consequently, a single rock-
physics template is available at all frequencies.

In this study, the Biot–Rayleigh (BR) theory of patchy-saturated rocks
(Ba et al., 2011) is used for fluid substitution. Firstly, the BR theory is
comparedwithWhite's and Johnson's theories for carbonates. Regarding
the in-situ petrology properties of carbonate reservoirs in Metajan
district of the Right Bank Block of the Amu Darya, a multiscale rock-
physics template is designed and then compared with laboratory mea-
surements, sonic logs and surface seismic data. Based on post-stack and
pre-stack inversion of surface seismic data, the template is used to esti-
mate the porosity and gas saturation of reservoir rocks. Finally, the char-
acteristics of the multiscale rock-physics template are summarized.
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2. Wave propagation theory for patchy-saturated rocks

2.1. Biot–Rayleigh theory

The double-porosity theory has been extended to describe wave
propagation in patchy-saturated rocks by Pride et al. (2004), in which
a branching function is used to connect the exact low- and high-
frequency limits of wave dispersion and attenuation (Müller et al.,
2010). Ba et al. (2011) extended the Rayleigh's (1917) formula to de-
scribe the oscillation of local fluid flow and derived dynamic equations
for wave propagation in a double-porosity medium saturated with a
single fluid (see Fig. 1A), which can be expressed as
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where u, U(1) and U(2) are the average particle displacements of the
solid frame, fluid phase 1 (the fluid in the host medium) and fluid
phase 2 (the fluid in the inclusions) respectively, and e, ξ(1) and ξ(2)

are the corresponding displacement divergence fields of the three
phases. The scalar ς represents fluid variation in local fluid flow. ϕ10

and ϕ20 are the porosities of the host medium and inclusions, respec-
tively. ϕ1 and ϕ2 are the absolute porosities of the host and inclusions
(ϕ1 = ν1ϕ10 and ϕ2 = ν2ϕ20, where ν1 and ν2 are the volume ratios
of host medium and inclusion and ν1 + ν2 = 1. ϕ = ϕ1 + ϕ2 is the
porosity of the whole matrix). κ10 is the permeability of the host medi-
um. η1 and ρf(1) are the fluid viscosity and density of the host medium,
respectively. R0 is the inclusion radius. b1 and b2 are Biot's dissipation
coefficients.

The theory has been reformulated for patchy-saturated rocks by
Ba et al. (2012), where a single-porosity medium is saturated with
two fluids (see Fig. 1B). In this case Eq. (1) is still available, but the
host medium and inclusions have the same frame (ϕ10 = ϕ20 = ϕ)
and are saturated with different fluids. ϕ1 and ϕ2 are the relative po-
rosities of the two types of pores which are saturated with different
fluids; ν1 (ν2) indicates saturation and R0 is the radius of gas pockets.
The reformulated elastic constants for a patchy-saturated rock can be
expressed as (Ba et al., 2012; Sun et al., submitted for publication)
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where ks, kb, kf(1) and kf
(2) are the bulkmoduli of the solid grain, dry rock

skeleton, fluid in the host medium and fluid in the inclusions, respec-
tively; μb is the dry-rock shear modulus. The density coefficients are
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Fig. 1. Synoptic diagram for two types of mesoscopic heterogeneity in rocks. (A) A
double-porosity matrix saturated with one fluid. (B) A single-porosity matrix saturated
with two immiscible fluids.
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