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One of the most important aims of potential field geophysicists is delineate the edges of subsurface structures.
There are many methods based on horizontal and vertical derivative of potential field data for edge detection
and enhancement. The structure tensor technique one of the image processing techniques is used to edge detec-
tion studies inmany scientific areas. In this paper, the technique was applied to potential field data and detected
edges of the subsurface lineaments using its eigenvalue analysis. Based on noise-free and noisy synthetic data
sets, the technique was tested and satisfactory results were obtained. The proposed method was applied on
two real potential field datawhich are gravity data of Konya region andmagnetic data of Eastern Anatolia Region
in Turkey. These examples demonstrate that the technique provides beneficial information to geoscientists for
determining the horizontal location of subsurface structures such as contacts, faults or various source bodies.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Edge detection and edge enhancement techniques provide impor-
tant knowledge to potential field geophysicists to interpret the poten-
tial field data. For this purpose, many techniques have been developed
by various authors (Blakely and Simpson, 1986; Mallat and Zhong,
1992; Trompat et al., 2003). Most of these techniques are based on
horizontal and vertical derivatives of potential field data (Aydogan,
2011; Cooper and Cowan, 2008; Cordell, 1979; Cordell and Grauch,
1985; Miller and Singh, 1994; Veduzco et al., 2004). Cordell and
Grauch (1985) developed a method for the location of the horizontal
extents of the source bodies from themaxima of the horizontal gradient
of the pseudogravity computed from the magnetic data. Then Blakely
and Simpson (1986) improved the technique using curve-fitting
approach. There are advantages and disadvantages of derivative-based
edge detection methods. Aim of the derivative-based methods is to
clarify the eligibility of the anomalies while strengthening the high-
frequency components in the anomalies. During this process, the
noise in the anomaly will be also strengthening in addition to high-
frequency components.

The numerous edge detection and enhancement techniques used
in image processing are suitable for the analyzing potential field
data. Recently, some of the image processing techniques such as
wavelet analysis (Fedi and Quata, 1998), Markov Random Field
(Albora et al., 2007a, 2007b) and Cellular Neural Network (Aydogan,
2007; Aydogan et al., 2005) have been applied to geophysical data

for edge detection, edge enhancement and separation of potential
field anomalies. The structure tensor is also one of the image process-
ing techniques and represents a local orientation in an n-dimensional
space.

First, the method was used by Förstner (1986) and Harris and
Stevens (1988) for low-level feature analysis. The method gained
popularity for corner detection (Rohr, 1994). Later it was applied for
edge detection (Förstner, 1994), texture analysis (Rao and Schunck,
1991) and optic flow (Nagel and Gehrke, 1998). In geophysics, the
method was used by Jeong et al. (2006) to detect faults using the
3D seismic images.

In this study, the structure tensor technique was applied on
potential field data. The edges and corners of causative bodies
were extracted using its eigenvalues. In contrast to traditional
derivative‐based methods, the structure tensor has a property
which reduced noise in the data while enhancing discontinuity bound-
aries. We conclude that the eigenvalues of the structure tensor pro-
vide us important knowledge about edges and corners of subsurface
structures.

2. Theory of structure tensor and its eigenvalue analysis

The technique can be applied easily in the several steps. First, the
Gaussian envelope Gσ(x,y) is computed and convolved with potential
field data. σx and σy are the standard deviations of Gaussian envelope
in x and y directions. The process is used to smoothing the potential
field data.
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The parameters M,Mσ and * are the potential field data, smoothed
data and convolution operator, respectively.

Mσ x; yð Þ ¼ Gσ x; yð Þ �M x; yð Þ: ð2Þ

The structure tensor matrix T consists of gradients of the smoothed
potential field data. In this paper, two-dimensional structure tensor is
used to analysis of the potential field data. The structure tensors given
by Eq. (3) are calculated using the derivatives of smoothed data in the
each data points. The tensor only contains three independent compo-
nents of potential field data.

T ¼ ∇Mσ⊗∇Mσ ¼ ∇Mσ∇Mσ
T ¼
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The matrix given by Eq. (3) is structure tensor, interest operator or
second-moment matrix. The structure tensor can be demonstrated
the product of three matrix given by Eq. (4) which are eigenvector
matrix v, eigenvalue matrix λ and transpose matrix of eigenvector vT.

T ¼ v1 v2
v3 v4
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: ð4Þ

λ2−λ T11 þ T22ð Þ þ T11T22−T12T21ð Þ ¼ 0: ð5Þ

The eigenvalues of the structure tensor can be calculated using
Eq. (5). The roots of the polynom given by Eq. (5) are eigenvalues of
the structure tensor. The results of analysis of eigenvalues are
shown that λ1 and λ2 are ordered as λ1>λ2>0.

3. Synthetic model experiments

In this section, the effectiveness of the structure tensor technique is
tested on two synthetic total magnetic field data. We used synthetic
models consist of prismbodies due to they aremost appropriatemodels
for edge and corner detection. In the first synthetic application, a syn-
thetic total magnetic field data caused by four vertical-sided prisms at
a depth to the top of 2 km (labeled 1), 3 km (labeled 2), 2 km (labeled

Fig. 1. Synthetic total magnetic field data set, consisting of anomalies from four vertical
prism bodies with depths of 2 km (prism 1), 3 km (prism 2), 2 km (prism 3) and 1 km
(prism 4) for magnetization vector at 90° and magnetization strength of 470 A/m.

Fig. 2. 3D view of synthetic model (1).

Fig. 3. Eigenvalue maps obtained from total magnetic field data in Fig. 1. a) Largest
eigenvalue map, b) smallest eigenvalue map.
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