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The rotated optimal 9-point scheme for frequency-domain scalar wave equation is widely used in frequency-
domain full waveform inversion. This scheme requires equal directional sampling intervals, which limits its applica-
bility. Recently, an average-derivative method was proposed to overcome this restriction. However, the average-
derivative method is an algebraic approach, and therefore it does not inherit the geometrical property (coordinate
transformations) of the rotated optimal 9-point scheme. In this paper, a geometrical approach is developed, and a
generalized optimal 9-point scheme is constructed. This new scheme is based on a directional-derivative method,
and includes the rotated optimal 9-point scheme as a special case. Like the average-derivative method, the number
of grid points per wavelength is reduced from approximately 13 to approximately 4 by this new 9-point optimal
scheme for both equal and unequal directional sampling intervals in comparisonwith the classical 5-point scheme.
Unlike the average-derivative method, this generalized optimal 9-point scheme shares the geometrical property of
the rotated optimal 9-point scheme.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recently, full waveform inversion (FWI) has been attracting a lot of
attention in community of exploration geophysics. Generally speaking,
FWI can be described as a full-wavefield-modeling-based data-fitting
process to extract structural information of subsurface from seismograms
(Virieux and Operto, 2009). FWI can be classified into two categories:
time-domain FWI (Boonyasiriwat et al., 2009; Gauthier et al., 1986;
Tarantola, 1984) and frequency-domain FWI (Pratt, 1999; Pratt and
Worthington, 1990; Pratt et al., 1998).

Forwardmodeling is an important foundation of FWI. In the context of
FWI, Pratt and Worthington (1990) developed the classical 5-point
scheme for 2D frequency-domain scalar wave equation which imposes
no restriction on directional sampling intervals. However, this scheme
suffers from severe dispersion errors when large sampling intervals
(4 points per smallest wavelength) are employed. To reduce the disper-
sion errors, very small sampling intervals (13 points per smallest wave-
length) are required, which results in a significant increase of both
storage requirements and CPU time.

Based on a rotated coordinate system, Jo et al. (1996) developed a
9-point operator to approximate the Laplacian and the mass accelera-
tion terms. The coefficients of the 9-point operator are determined by
obtaining the best normalized phase curves through an optimization
process. Compared to the classical 5-point scheme developed by Pratt
and Worthington (1990), this optimal 9-point scheme reduces the

number of grid points per wavelength to less than 4, and leads to signif-
icant reductions of computer memory and CPU time. However, this op-
timal 9-point scheme loses theflexibility of the classical 5-point scheme
because it requires equal directional sampling intervals (Jo et al., 1996).

To overcome the disadvantage of the rotated optimal 9-point scheme,
Chen (2012) developed an average-derivative method. Unlike the meth-
od used by Jo et al. (1996), the average-derivative method does not need
to use rotated coordinate system and only involves algebraic operations.
In this paper, I will develop another approach to overcome the disadvan-
tage of the rotated optimal 9-point scheme. This approach is based on
the directional-derivative method proposed by Saenger et al. (2000).
The directional-derivative method is closely related to the rotated-
coordinate-system method, but has more flexibility.

In the next section, I will present the generalized optimal 9-point
scheme based on the directional-derivative method and staggered-grid
technique. This is followed by optimization of coefficients and a numeri-
cal dispersion analysis. Finally, I perform two numerical experiments on a
homogenous model and the Marmousi model to test the generalized
optimal 9-point scheme.

2. Generalized optimal 9-point scheme

Consider the two-dimensional scalar wave equation in frequency
domain

∂2P
∂x2

þ ∂2P
∂z2

þω2

v2
P ¼ 0; ð1Þ
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where P is the pressurewavefield,ω is the angular frequency, and v(x,z)
is the velocity.

The classical 5-point scheme for Eq. (1) is

Pmþ1; n−2Pm; n þ Pm−1; n

Δx2
þ Pm; nþ1−2Pm; n þ Pm; n−1

Δz2
þ ω2

v2m; n
Pm; n ¼ 0;

ð2Þ

where Pm, n≈P(mΔx,nΔz), and Δx and Δz are directional sampling in-
tervals in the x-direction and z-direction, respectively.

As can be seen later (Section 3), within the phase velocity error
of ±1%, the classical 5-point scheme (2) requires approximately 13
grid points per shortest wavelength. In order to reduce numerical dis-
persion of the scheme (2), very fine grids are required. This leads to a
huge amount of computer storage and CPU time. Therefore, reducing
the number of grid points required per shortest wavelength is needed.

To this aim, a 9-point scheme for Eq. (1) was introduced by Jo et al.
(1996):

a
Pmþ1; n þ Pm−1; n−4Pm; n þ Pm; nþ1 þ Pm; n−1

Δ2
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þe Pmþ1; nþ1 þ Pm−1; nþ1 þ Pmþ1; n−1 þ Pm−1; n−1
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where Δx=Δz=Δ. The constants a, c and d are weighting coeffi-
cients, and e ¼ 1−c−4d

4 : For details, See Fig. 1a.
The rotated 9-point optimal scheme (3)with coefficients (a=0.5461,

c=0.6248, and d=0.0938) reduces the number of grid points per
shortest wavelength to less than 4, and results in remarkable reductions
of computer storage and CPU time. However, this scheme has a require-
ment of Δx=Δz, which limits its application.

Now I try to develop a generalization of scheme (3)which is also valid
for Δx≠Δz. When Δx≠Δz, the idea of rotated coordinate system can be
developed into the directional-derivative method (Saenger et al., 2000).
For details, see Fig. 1b. When Δx≠Δz, the two directions l1 and l2 are
not orthogonal to each other. One can compute directional-derivatives
as follows:

∂P
∂l1

¼ Δx
Δr

∂P
∂x−

Δz
Δr

∂P
∂z ; ð4Þ

∂P
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∂P
∂x þ Δz

Δr
∂P
∂z ; ð5Þ

where Δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δz2

p
. From Eqs. (4) and (5), one can obtain
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From Eqs. (6) and (7), one can further obtain
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From Eq. (8), an approximation to the Laplacian can be obtained:
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where Δ̃ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1
Δx2

þ 1
Δz2

ð Þp : Δ̃ can be called the root-harmonic-mean-square

interval of Δx and Δz (Chen, 2011).
Using Eq. (9), one can obtain the following scheme
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where

A ¼ 0; Δx ¼ Δz;
Pmþ2; n−Pm; nþ2−Pm; n−2 þ Pm−2; n; Δx≠Δz:

	

Scheme (10) is a 13-point scheme. Compared to the rotated opti-
mal 9-point scheme, it includes four additional grid points. This is
caused by the second-order mixed partial derivative in Eq. (8).
When Δx=Δz, the term involving the mixed partial derivative be-
comes zero, and the 13-point scheme becomes the rotated optimal
9-point scheme.

On the other hand, without the condition of Δx=Δz, the scheme
(10) can be simplified too. Using a staggered-grid technique (Štekl
and Pratt, 1998), the second term on the right-hand side of Eq. (8)
can be discretized as follows:
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Using the approximation (11), the 13-point scheme (10) can be
simplified into a 9-point scheme:
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The scheme (12) is a generalized optimal 9-point scheme because
it includes the rotated optimal 9-point scheme (3) as a special case
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