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Cross-well seismic reflection data, acquired from a carbonate aquifer at Port Mayaca test site near the eastern
boundary of Lake Okeechobee in Martin County, Florida, are used to delineate flow units in the region
intercepted by two wells. The interwell impedance determined by inversion from the seismic reflection
data allows us to visualize the major boundaries between the hydraulic units. The hydraulic (flow) unit prop-
erties are based on the integration of well logs and the carbonate structure, which consists of isolated vuggy
carbonate units and interconnected vug systems within the carbonate matrix. The vuggy and matrix porosity
logs based on Formation Micro-Imager (FMI) data provide information about highly permeable conduits at
well locations. The integration of the inverted impedance and well logs using geostatistics helps us to assess
the resolution of the cross-well seismic method for detecting conduits and to determine whether these con-
duits are continuous or discontinuous between wells. A productive water zone of the aquifer outlined by the
well logs was selected for analysis and interpretation. The ELAN (Elemental Log Analysis) porosity from two
wells was selected as primary data and the reflection seismic-based impedance as secondary data. The direct
and cross variograms along the vertical wells capture nested structures associated with periodic carbonate
units, which correspond to connected flow units between the wells. Alternatively, the horizontal variogram
of impedance (secondary data) provides scale lengths that correspond to irregular boundary shapes of
flow units. The ELAN porosity image obtained by cokriging exhibits three similar flow units at different
depths. These units are thin conduits developed in the first well and, at about the middle of the interwell
separation region, these conduits connect to thicker flow units that are intercepted by the second well. In
addition, a high impedance zone (low porosity) at a depth of about 275 m, after being converted to ELAN
porosity, is characterized as a more confined low porosity structure. This continuous zone corresponds to a
permeability barrier in the carbonate aquifer that separates the three connected conduits observed in the
cokriging image. In the zones above and below this permeability barrier, the water production is very high,
which agrees with water well observations at the Port Mayaca aquifer.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This study aims to integrate geophysical information to constrain
the mapping of conduits in the interwell region of an aquifer test site,
located about 48 km west of the Atlantic Ocean and approximately
1.6 km east of the eastern boundary of Lake Okeechobee in Martin
County, south Florida. Some of the conduits are so thin that they are
observed only in the Formation Micro-Imager (FMI) logs at the well
locations (Parra et al., 2009). Thicker conduits are delineated by geo-
physical data, obtained by ground penetrating radar (GPR) and seismic
techniques (Cardimona et al., 1998; Dubreuil-Boisclair et al., 2011;

McKenna and Poeter, 1995). In these studies, GPR and seismicmeasure-
ments are based on cross-well transmission tomographywith well sep-
arations ≤30 m. Cardimona et al. (1998) compared images of seismic
reflections and GPR in a shallow aquifer. The results showed that seis-
mic data imaged clay lenses, whereas low-frequency radar profiles did
not provide clear results. In GPR measurements, depth of penetration
is limited by the presence of clay minerals or high conductivity pore
fluid. GPR waves can reach depths up to 30 m in low conductivity ma-
terials such as dry sand or granite. Clays, shale, and other high
conductivitymaterials may attenuate or absorb GPR signals, greatly de-
creasing the depth of penetration to 1 m or less. In contrast, cross-well
reflection seismic measurements can detect heterogeneities and rock
physical properties with vertical and horizontal resolutions of 0.6 m
and 3 m, respectively, at an interwell distance greater than 365 m
(Parra et al., 2009). The goal of this study is to estimate porosity between
well locations in order to identify the lateral extents of the rock
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structures and their connectivity, by combining cross-well reflection
seismic data and well log data.

The problem with using densely sampled secondary information
(such as seismic impedance) in addition to sparsely sampled well-log
measurements is a longstanding issue in subsurface mapping applica-
tions, especially in oil reservoir modeling (Abrahamsen et al., 1997;
Doyen, 1988; Doyen et al., 1996; Dubrule, 1998, 2003). Bayesian
approaches, such as Bayesian maximum entropy (Christakos, 1990;
Christakos and Li, 1998; Wibrin et al., 2006) and Bayesian data fusion
(Bogaert and Fasbender, 2008), offer a flexible solution to account for sec-
ondary information and its uncertainty, while they avoid assuming linear
relationships between the variables. An alternative way of integrating
secondary information without the restriction of linear models is provid-
ed by machine learning algorithms, such as artificial neuronal networks,
support vector regressions, and genetic algorithms (Besaw and Rizzo,
2007; Kanevski et al., 2003; Leite and Vidal, 2011;Matsoukas et al., 1999).

In the field of geostatistics, a secondary variable that is exhaustively
known in space can be used to define a trend model for the variable of
interest (also called the primary variable). To this end, one can combine
spatial prediction and regression techniques, leading to the so-called
“kriging with a trend model”, i.e., the guess field model (Chilès and
Delfiner, 2012), regression kriging (Hengl et al., 2007) and external
drift kriging (Goovaerts, 1997; Hudson and Wackernagel, 1994). The
underlying trendmodel is that the primary variable has been generated
by a spatial random field Z1 such that, at each location x, one has:

E Z1 xð Þf g ¼ aþ bZ2 xð Þ; ð1Þ

where a and b are numerical coefficients, Z2 denotes the secondary vari-
able, and E{.} stands for themathematical expectation. The differences be-
tween the aforementioned approaches lie in how the regressionmodel is
calibrated and whether or not the regression coefficients (a and b) are
known. From Eq. (1), it is seen that the dependence between the primary
(Z1) and secondary (Z2) variables is essentially a functional dependence
and that the secondary variable is considered as a deterministic field.

An alternative to kriging with a trend model is cokriging, which
allows one to predict a variable of interest at a given location from
data on this variable as well as on one or several covariates (Goovaerts,
1997; Wackernagel, 2003; Wackernagel et al., 2002). Here, all the vari-
ables are viewed as outcomes of spatial random fields, commonly with
the assumption that their expected values are constant in space or, at
least, constant at a local scale. In such a case, the relationship between
the primary and secondary variables is reduced to a stochastic depen-
dence, controlled by cross-correlation between the random fields.
Cokriging variants include simple cokriging, in which the mean values
of the random fields are assumed known, and ordinary cokriging, in
which themean values are unknown. The former implies littleflexibility,
as no uncertainty in the means can be taken into account (a reason
global means are usually considered), while the latter often gives little
importance to the secondary variable, as theweights assigned to second-
ary data sum to zero (Goovaerts, 1997). Several studies have compared

the performance of krigingwith a trend predictors and cokriging predic-
tors (Asli and Marcotte, 1995; Goovaerts, 2000; Juang and Lee, 1998;
Pardo-Igúzquiza, 1998), but no clear conclusion can be drawn as to
which is better. The main characteristics of the predictors are listed in
Table 1.

For this study, we combined the advantages of cokriging and kriging
with a trendmodel, by considering both a functional dependence and a
stochastic dependence between the primary and secondary variables.
These variables are considered as outcomes of cross-correlated random
fields (as in simple or ordinary cokriging), but with the following addi-
tional restriction that modifies Eq. (1):

E Z1 xð Þf g ¼ aþ bE Z2 xð Þf g; ð2Þ

where the coefficients a and b are assumed known, while the expected
values of Z1 and Z2 are unknown but locally constant in space. This way,
the relationships between the primary and secondary variables stem
not only from the correlation (second-order moment) between the as-
sociated random fields, but also from the functional dependence be-
tween their expected values (first-order moments). This variant is
suitablewhen the variables are linearly related,which is the case for im-
pedance and porosity.

For completeness, the stochastic simulation approach is considered as
an alternative for incorporating data from different sources. Many algo-
rithms have been proposed, based on Gaussian or indicator transforms,
simulated annealing, or Bayesian models, among others (Dafflon et al.,
2009; Deutsch and Cockerham, 1994; Dubreuil-Boisclair et al., 2011;
Goovaerts, 1997; Pebesma, 2004). Simulation allows one to assess spatial
uncertainty through the construction of multiple outcomes that repro-
duce the spatial variability of the true unknown fields, but none of
these outcomes is a good local predictor of the true fields. Simulation
is out of the scope of this work, which aims at mapping porosity rather
than constructing multiple outcomes of it.

2. Data acquisition and processing

A cross-well survey was conducted at the Port Mayaca test site,
Florida. This site is located about 48 km west of the Atlantic Ocean
and approximately 1.6 km east of the eastern boundary of Lake
Okeechobee in Martin County, south Florida. The measurements were
taken between monitoring wells MF-37 and EXPM-1 (located at east
coordinates 0 and 382.6 m, respectively), using a Z-Seis piezoceramic
X series source and a 10-level hydrophone system (Parra et al., 2003,
2006, 2009). Multiple source and detector measurements were taken
in the depth interval from121.9 to 518.2 m. The objectives of the survey
were to map the flow unit variability in the region between the two
wells, to assess whether the high-resolution seismic survey could re-
solve and detect zones of high water production, and tomap thematrix
porosity and permeability. In this study, we consider the porosity logs
from wells MF-37 and EXPM-1 and the P-wave impedance data
obtained by inverting the cross-well reflection seismic measurements,

Table 1
Main characteristics of kriging and cokriging predictors.

Kriging with a trend Simple cokriging Ordinary cokriging

Linear functional dependence between primary and
secondary variables (trend model)

No functional dependence between primary and secondary
variables

No functional dependence between primary and secondary
variables

No stochastic dependence between primary and
secondary variables

Linear stochastic dependence (correlation) between
primary and secondary variables

Linear stochastic dependence (correlation) between
primary and secondary variables

Secondary variable exhaustively known Secondary variable may be partially known Secondary variable may be partially known
Implementation in a local neighborhood when too
many primary data points are available

Implementation in a local neighborhood when too many
primary or secondary data points are available

Implementation in a local neighborhood when too many
primary or secondary data points are available

No uncertainty in the mean values, generally taken as
constant in space

Total uncertainty in the mean values, which are constant at
the neighborhood scale

Need for the variogram of the primary variable only Need for a coregionalization model (direct and cross
variograms)

Need for a coregionalization model (direct and cross
variograms)
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