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A simple and fast determination of the limiting depth to the sources may represent a significant help to the data
interpretation. To this end we explore the possibility of determining those source parameters shared by all the
classes of models fitting the data. One approach is to determine themaximum depth-to-source compatible with
the measured data, by using for example the well-known Bott–Smith rules. These rules involve only the
knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast.
Thanks to the direct relationship between structural index and depth to sources we work out a simple
and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler
deconvolution or depth-from-extreme-points method (DEXP).
The proposed method consists in estimating the maximum depth as the one obtained for the highest
allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the
dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic
field). We tested our approach on synthetic models against the results obtained by the classical Bott–Smith
formulas and the results are in fact very similar, confirming the validity of this method. However, while
Bott–Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic
field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess
the source model based on the (∂f/∂x)max/fmax ratio.
The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the
estimation of the maximum depth agrees with the seismic information.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Inverse potential field problems are inherently difficult to solve
because they are ill-posed and do not have a unique solution.
Moreover, the calculated solution may be extremely sensitive to
errors. We pose the forward problem as:

f rð Þ ¼ ∫
V

A r; r0ð ÞM r0ð Þdr03 ð1Þ

where f is the field, measured outside the source volume V, and the
unknown source distribution is described by a continuous function
M inside V, r0 denotes the position of a point inside the source
volume, and r denotes an observation point outside V. The function
A is the Green's function for the gravitational or magnetic sources.

However, Eq. (1) is a first-kind Fredholm equation, known to be
an ill-posed problem. Even if we had access to noise-free and contin-
uous field data, we would face an ambiguity problem: by Green's

third identity, any potential field in a sub-region can be reproduced
by an infinite variety of surface distributions. Moreover, any source
distribution producing a null field, belonging to the so-called annihi-
lator (Parker, 1977), cannot be determined from the data. Other kinds
of ambiguity may also be mentioned: a sampling ambiguity occurring
because discrete data sets may be insufficient to completely represent
the continuous field from the source; algebraic ambiguity, occurring
in inverse theory because the source discretization usually leads to a
system with more unknowns than data; noise “ambiguity”, referring
to components of the solution that cannot be recovered due to errors
and noise, i.e., components that are practically undetermined.

To face these ambiguities, some sort of incorporation of a priori
knowledge is needed, in order to compute unique solutions. The a
priori information can be supplied in many ways, as to minimize
the density model weighted norm with respect to some reference
model (Green, 1975); constraining a linear least-squares problem
for upper and lower density bounds and for a density monotonically
increasing with depth (Fisher and Howard, 1980); searching for com-
pact solutions (Last and Kubik, 1983; Pilkington, 2009; Zhdanov,
2002) or for solutions that are smooth in some sense, e.g., as mea-
sured by a (weighted) norm of the solution itself and/or some of its
derivatives. In this sense Li and Oldenburg (1996) obtained depth
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resolution by incorporating a suitable depth weighting function in the
regularization formulation.

An entirely different approach to face the ambiguity is to deter-
mine which model parameters are common to all models fitting the
data, or at least to wide classes of all the models. For instance the
total excess mass of the buried body is a parameter shared by all
the possible models and may be determined uniquely if the anomaly
is enough isolated and well sampled (Grant and West, l965).

A similar reasoning occurs for the boundaries on density and
depth expected for the whole set of the sources. They may be
uniquely specified even when the data are incomplete, according to
the maximum-depth rules (e.g., Smith, 1959) or by determining the
class of “ideal” bodies which achieve the extreme values of depth or
density (Parker, 1974). In particular, the maximum-depth rules
allow a rapid estimation of the maximum source depth from the
anomaly and its gradient at specific points and by assuming a
maximum for the density by geological or other information. Such
estimates can be obtained from anomalies generated by isolated
sources. Among several formulas of this kind (e.g., Smith, 1959) we
consider of great interest those developed by Bott and Smith (1958)
for the gravity field:
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for the 2D case.
The important feature of these formulas is that they depend

uniquely on the values of the field and of its horizontal gradient, so
that no other restrictions are placed on the magnitude or variation
of the density, or on the shape of the body. According to Bott and
Smith (1958) these limiting estimates refer to the topmost part of
the source. We could however obtain biased solutions from Eqs. (2)
and (3) in presence of regional fields (affecting the value of fmax), so
that a preliminary detrending is highly recommended.

We will describe in this paper how semi-automatic methods
based on the properties of the homogeneous fields, such as the
Euler deconvolution (e.g., Nabighian and Hansen, 2001; Reid et al.,
1990) and the “Depth from EXtreme Points” (DEXP) method (Fedi,
2007; Fedi and Pilkington, 2012), may be used as an alternative and
stable approach to define the maximum depth to the sources. In this
paper we will use mainly the DEXP method, which is characterized
by a composite upward continuation–differentiation operator acting
as a band-pass operator (Fedi et al., 2009). This feature makes the
DEXP method very stable vs. the noise, even using a high-order
vertical or horizontal derivative of the field. We will show in the
next section how the maximum depth may be easily determined
with DEXP method by using the highest allowable value of the
structural index N.

2. Determining the maximum depth by the DEXP method

2.1. The highest allowable value of the structural index

As well known, the value of the structural index N varies according
to the type of the field and to the source type (e.g., Reid et al., 1990;
Hsu, 2002). The highest allowable value Nmax is in practice deter-
mined by the nature of the analyzed field (gravity field or magnetic
field) and by the dimensionality of the problem (2D or 3D). For
instance, in the 3D gravity case the allowed values for N are the
integers [−1, 0, 1, 2] so that Nmax=2. In the 3D magnetic case the

allowed values for N are instead the integers [0, 1, 2, 3] so that
Nmax=3.

In the 2D case, Nmax is equal to 1 and 2, respectively for the gravity
and magnetic case, because no 3D ideal sources (spheres) are
allowed. Finally, as shown in Table 1, Nmax is increased by the
differentiation order p whenever a vertical or horizontal derivative
of gravity and magnetic fields is considered.

The selection of the maximum value of the allowable structural
index method is thus very simple (Table 1) and our method is fast
to apply, as it will be shown in the following sections.

2.2. The DEXP transformation

The DEXP transformation (Fedi, 2007) is a simple transformation
applied to the p-order derivative of the potential field f, which we
indicate as fp:

Ωp ¼ zNp=2f p ð4Þ

where z is the altitude and:

Np ¼ N þ p: ð5Þ

The numerical implementation of the method uses upward
continuation and vertical differentiation for the computation of fp.

The DEXP transformation enjoys useful properties (Fedi, 2007),
the main being that the vertical position of its maxima ⌢z yields the
depth to the source z0, simply as z0=− ⌢z. This rule applies to homo-
geneous fields. For instance, in the magnetic case, homogeneous
fields are generated by ideal sources such as the point dipole
(N=3), the infinite horizontal and the semi-infinite vertical cylinders
(N=2), the dike and sill (N=1) and the contact (N=0).

From Eq. (4) we argue that the DEXP transformation needs Np to
be either assumed or estimated in advance. This may be made in
several ways, from the scaling function (Fedi, 2007; Florio et al.,
2009) or also using Euler deconvolution algorithms (e.g., Nabighian
and Hansen, 2001). However, we are not really interested here in
this task. We want in fact to use a different property of the DEXP
transformation, allowing us to determine the maximum depth to
the source. This property is the linear relationship between N and
z0, clearly shown by several authors (e.g., Barbosa et al., 1999) in
the case of Euler deconvolution. Thanks to this property, the estimat-
ed depth to the source will increase as N increases and the maximum
depth will then be reached at the maximum allowable N (Nmax). So
we can obtain the maximum depth by the maxima of Ωp according to:

Ωp ¼ zNmax=2f p ð6Þ

2.3. Purely 3D and 2D sources

In this section we will show how to obtain a maximum depth es-
timate by using the DEXP method. We will test the maximum-depth
consistency of the DEXP estimate (Eq. (6)) by comparison with the

Table 1
Nmax for potential fields.

Dimensionality Gravity
field

p-order
derivative
of Gravity
field

Magnetic
field

p-order
derivative
of Magnetic
field

Corresponding
model

3D 2 2+p 3 3+p Sphere
2D 1 1+p 2 2+p Infinite

horizontal
cylinder, infinite
vertical cylinder
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