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Enhancing the resolution and accuracy of surface ground-penetrating radar (GPR) reflection data by inverse
filtering to recover a zero-phased band-limited reflectivity image requires a deconvolution technique that
takes the mixed-phase character of the embedded wavelet into account. In contrast, standard stochastic
deconvolution techniques assume that the wavelet is minimum phase and, hence, often meet with limited
success when applied to GPR data. We present a new general-purpose blind deconvolution algorithm for
mixed-phase wavelet estimation and deconvolution that (1) uses the parametrization of a mixed-phase
wavelet as the convolution of the wavelet's minimum-phase equivalent with a dispersive all-pass filter, (2)
includes prior information about the wavelet to be estimated in a Bayesian framework, and (3) relies on
the assumption of a sparse reflectivity. Solving the normal equations using the data autocorrelation function
provides an inverse filter that optimally removes the minimum-phase equivalent of the wavelet from the
data, which leaves traces with a balanced amplitude spectrum but distorted phase. To compensate for the
remaining phase errors, we invert in the frequency domain for an all-pass filter thereby taking advantage
of the fact that the action of the all-pass filter is exclusively contained in its phase spectrum. A key element
of our algorithm and a novelty in blind deconvolution is the inclusion of prior information that allows resolv-
ing ambiguities in polarity and timing that cannot be resolved using the sparseness measure alone. We em-
ploy a global inversion approach for non-linear optimization to find the all-pass filter phase values for each
signal frequency. We tested the robustness and reliability of our algorithm on synthetic data with different
wavelets, 1-D reflectivity models of different complexity, varying levels of added noise, and different types
of prior information. When applied to realistic synthetic 2-D data and 2-D field data, we obtain images
with increased temporal resolution compared to the results of standard processing.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Surface ground penetrating radar (GPR) reflection surveying has
become a widely used tool for high-resolution imaging of the shallow
subsurface for environmental, geological, archeological, and engi-
neering applications (e.g., Annan, 2005; Neal, 2004; Slob et al.,
2010). The detailed interpretation of subtle stratigraphic features
and the identification of closely spaced subsurface targets in GPR re-
flection data critically depend on the accuracy and optimized tempo-
ral resolution of the images. However, the unprocessed GPR reflection
data provide a blurred and incorrect image of the true subsurface re-
flectivity structure due to the shape and causal nature of the wavelet
embedded in the reflection data (e.g., van Dam and Schlager, 2000).
This embedded wavelet has been affected by the source-pulse shape
(e.g., Streich and van der Kruk, 2007), the antenna-coupling response
(e.g., Lampe and Holliger, 2003) and the earth filter, which introduce

amplitude distortions and time delays relative to the earth's reflectivity
structure. In this paper, we present a novel blind-deconvolution algo-
rithm that we employ in a new approach to deconvolution for GPR.

Deconvolution is an inversefiltering procedure that aims at increasing
the temporal resolution of reflection data and retrieving a band-limited
version of the earth's reflectivity function by removing the embedded
wavelet (Robinson and Treitel, 2000). In seismic-reflection processing,
deconvolution is widely considered to be a key procedure for resolution
enhancement and has a critical impact on image quality and data inter-
pretability (e.g., Yilmaz, 2001). Ideally, the remaining wavelet after
deconvolution (i.e., the embeddedwavelet convolvedwith the estimated
inversefilter) is a short zero-phase pulse, whichmeans that the reflection
amplitudes in the deconvolved data are observed at the true reflection
travel times. The image resolution is increased because a zero-phase
wavelet is shorter in time duration than other wavelets with the same
amplitude spectrum (Berkhout, 1974). Despite the popularity of GPR re-
flection imaging, only few reports of successful deconvolution applica-
tions to GPR data have been published to date (e.g., Arcone et al., 1998;
Chen and Chow, 2007; Fisher et al., 1996; Lafleche et al., 1991; Moran
et al., 2000; Xia et al., 2003; Xia et al., 2004). The lack of reliable deconvo-
lution approaches to GPR data is unsatisfactory as the image accuracy and
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temporal resolution of many GPR data sets may be suboptimal. Deconvo-
lution also includes estimating the embedded wavelet, which when
known can aid in the data interpretation and may serve as input param-
eter for waveform modeling.

Standard stochastic deconvolution algorithms (spiking and predic-
tive deconvolution algorithms; e.g., Robinson and Treitel, 1967, 2000)
as for example applied to GPR data by Arcone et al. (1998), Belina et al.
(2009) and Lafleche et al. (1991) perform best for minimum-phase
wavelets. However, GPR systems radiate mixed-phase wavelets with
their maximum amplitudes generally observed in the center of the
wavelet (Annan, 2005), whereas minimum-phase wavelets are char-
acterized by as much front-loaded energy distribution as possible.
This discrepancy in energy distribution (phase characteristics) is likely
responsible for the often poor performance reported for deconvolu-
tion applied to GPR data. If an estimate of the embedded wavelet is
available, deterministic deconvolution (wavelet deconvolution; e.g.,
Berkhout, 1977) may be an alternative approach (e.g., Gottsche et al.,
1994; Neves and Miller, 1996; Xia et al., 2003, 2004). Wavelet esti-
mates have been obtained by measuring the pulse traveling through
the air while holding the source and receiver antennas facing each
other (e.g., Xia et al., 2003, 2004) or estimated from prominent isolat-
ed reflections (e.g., Gottsche et al., 1994). Belina et al. (2009) pointed
out that airwavemeasurements using lifted antennas ignore antenna-
ground coupling effects (Lampe and Holliger, 2003) and, hence, give
unrealistic estimates of the wavelet that propagated through the sub-
surface. As an alternative method for resolution improvement, Belina
et al. (2009) discussed band-limited spectral whitening and spectral
blueing, which balance the amplitude spectrumwithout phase correc-
tion and imply that the embedded wavelet is zero phase (Yilmaz,
2001). Other approaches to enhance the GPR image resolution by re-
ducing attenuation and dispersion effects without removing the em-
bedded wavelet (e.g., Bradford, 2007; Irving and Knight, 2003;
Turner, 1994) result in sharper images, but the distortions of the
data phase (e.g., misallocation of reflections in time) remain.

Standard stochastic and deterministic deconvolution routines ei-
ther involve the estimation of the embeddedwavelet from the data as-
suming it is minimum-phase or require that the wavelet is known. In
contrast, blind deconvolution routines aim at retrieving both the em-
bedded wavelet and the underlying reflectivity series from the data
without making a priori assumptions about the phase spectrum of
the wavelet (e.g., Sacchi and Ulrych, 2000). Instead, blind deconvolu-
tion approaches generally are based on more restrictive assumptions
about the reflectivity than standard stochastic deconvolution. For ex-
ample, the reflectivity may be assumed to exhibit a non-Gaussian am-
plitude distribution (e.g.,Walden, 1985). Non-Gaussian in this context
means that a distribution is sparse or leptokurtic, exhibiting a higher
probability of extreme values than a Gaussian distribution.

As a consequence of the Central Limit Theorem, convolving a lepto-
kurtic reflectivity series with an arbitrary wavelet produces an output
with a distribution closer to Gaussian (Donoho, 1981). Hence, maximiz-
ing some measure of the deviation from a Gaussian distribution of the
deconvolution output such as the kurtosis potentially allows recovering
the original reflectivity series. Other blind deconvolution approaches
are based on, for example, matching higher-order cumulants between
the data and the wavelet (e.g., Velis and Ulrych, 1996), maximization
of whiteness measures of the deconvolution output (van der Baan and
Pham, 2008), or separating the wavelet and reflectivity using the com-
plex cepstrum (e.g., homomorphic deconvolution; Ulrych, 1971).

In reflection seismology, Wiggins (1978) introduced the first blind
deconvolution algorithm based on kurtosis maximization termed
“minimum entropy deconvolution” (MED). Even though the kurtosis
proved to be a robust measure for detecting phase changes (e.g.,
Longbottom et al., 1988; van der Baan, 2008; van der Baan and
Fomel, 2009), some of themain disadvantages of kurtosis maximization
andMED applications are that they are associated with a non-linear and
multi-modal objective function (Wiggins, 1985) and that kurtosis is

insensitive to timing and polarity (Longbottom et al., 1988; Wiggins,
1978).

In addition to the MED technique, a series of other mixed-phase
wavelet estimation and deconvolution algorithms that rely on the
assumption of a non-Gaussian reflectivity distribution have been pre-
sented. Wood (1999) proposed a simultaneous deconvolution and
wavelet estimation technique that inverts in the frequency domain for
the wavelet phase spectrum given the wavelet's amplitude spectrum.
The decomposition of a mixed-phase wavelet into a minimum-phase
and maximum-phase component (Eisner and Hampson, 1990), or
reformulated, the parametrization of amixed-phasewavelet as the con-
volution of the wavelet's minimum-phase equivalent with an all-pass
filter (Claerbout, 1985) was used by Misra and Sacchi (2007), Porsani
and Ursin (1998), and Ursin and Porsani (2000) to estimate mixed-
phase wavelets. Porsani and Ursin (1998) and Ursin and Porsani
(2000) estimated an optimum all-pass filter by solving extended nor-
mal equations in an exhaustive search manner. Porsani and Ursin
(1996) applied this approach also to GPR data. Misra and Sacchi
(2007) inverted for the all-pass filter using fourth-order cumulant
matching and employed a global non-linear optimization scheme for
computing the all-pass filter coefficients.

In summary, standard deconvolution routines have rarely been
applied successfully to GPR data, which we primarily attribute to the
mixed-phase characteristics of the GPR source wavelet. We present a
novel general-purpose mixed-phase wavelet estimation and deconvo-
lution algorithm to enhance surface GPR reflection data. First, we dis-
cuss the pertinent theoretical aspects and then present the details of
the implementation with regard to the frequency-domain filter design
and the time-domain objective function evaluation. A novel contribu-
tion to the blind-deconvolution problem and key element of our algo-
rithm is the inclusion of prior information in a Bayesian framework,
which allows constraining the polarity and timing of the wavelet to be
estimated. In order to solve the non-linear deconvolution problem, we
employ a global optimization scheme. We assess the robustness and
limitations of our deconvolution algorithmwith regard to the input pa-
rameters and noise using different 1-D synthetic data sets. Finally, we
explore the potential of our new deconvolution scheme on realistic
2-D synthetic data and a 2-D field GPR profile. A list of mathematical
symbols and a glossary of the most important terms are presented in
Appendix A and Appendix B, respectively.

2. Theoretical background

We assume that a GPR trace x(t) represents the recording of far-field
plane-wave reflections and can be modeled as the convolution of a
reflectivity series r(t), which is a function of the impedance contrasts,
with a stationary wavelet w(t) plus some superposed noise n(t) such
that

x tð Þ ¼ r tð Þ �w tð Þ þ n tð Þ; ð1Þ

where * denotes convolution and t represents time. For our further anal-
ysis, we assume that (1) r(t) is a stationary non-Gaussian white series,
(2) that n(t) and r(t) are uncorrelated and (3) that the variance of n
(t) is much smaller than the variance of r(t) (e.g., Robinson and Treitel,
2000).

For electromagnetic waves, the impedance is the scalar ratio of the
transverse components of the electric andmagnetic fields E andH, re-
spectively, and may be expressed in the frequency domain as (e.g.,
Ward and Hohmann, 2006)

I ¼ Ej j
Hj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

�þ i σω

s
; ð2Þ

where �, σ, and μ are the dielectric permittivity, electrical conduc-
tivity, and magnetic permeability, respectively, which are assumed
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