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We present a joint structural inversion algorithm for cross-hole electrical resistance tomography (ERT) and
cross-hole radar travel time tomography (RTT) that encourages coincident sharp changes on a smoothly
varying background in the two models. The proposed approach is based on the combination of two iterative
soft-thresholding inversion algorithms in parallel manner where the structural information is exchanged at
each iteration. Iterative thresholding algorithm allows to obtain a sparse wavelet representation of the
model (blocky model) by applying a thresholding operator to the wavelet coefficients of model obtained
through a Gauss–Newton iteration. The structural information is introduced in the inversion system using
the smoothness weighting matrices that control boundary cells and the thresholds that are estimated by
maximizing a structural similarity criterion, which is a function of the two (ERT and RTT) models. A Canny
edge detector is implemented to extract the structural information. The detected edges serve to build a
weighting matrix that is used to alter the smoothness matrix constraint. To validate our methodology and
its implementation, tests were performed on three synthetic models. The results show that the parameters
estimated by our joint inversion approach are more consistent than those from individual inversions and an-
other joint inversion algorithm. In addition, our approach appears to be robust in high noise level conditions.
Finally, the proposed algorithm was applied for vadose zone characterisation in a sandstone aquifer. It
achieves results that are consistent with hydrogeological information and geophysical logs available at the
site. The results were also compared in terms of structural similarities to models obtained by a joint structural
inversion algorithm with a cross-gradient constraint. Based on this comparison and hydrogeologic informa-
tion, we conclude that the proposed algorithm allows to the RTT and ERT models to be dissimilar in the areas
where the data are incompatible.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Cross-hole electrical resistance tomography (ERT) and cross-hole
ground penetrating radar travel time tomography (RTT) have become
increasingly used in hydrogeological, environmental and geotechni-
cal applications (Butler, 2005; Rubin and Hubbard, 2005; Vereecken
et al., 2006). Electrical properties estimated by these techniques
(electrical conductivity and dielectric permittivity, respectively) are
linked to hydraulic parameters such as porosity, water content, salinity,
and cation exchange capacity (e.g. Lesmes and Friedman, 2005). To
build a better understanding of the hydrogeological setting, it is impor-
tant to have the most accurate geophysical characterization; when
compared to the geophysical understanding obtained by individual in-
version of both ERT and RTT datasets improvements to the estimation

of the final model can be achieved by appropriate regularization
schemes, a priori information and use of joint inversion.

The term joint inversion has been used in several ways in geophys-
ical literature. In the present study, we define joint inversion as estima-
tion of subsurface model expressing different related geophysical
properties using several independent geophysical data types. The geo-
physical properties can be linked by petrophysical relationship (Lines
et al., 1988) or structural similarities (e.g. Haber and Oldenburg, 1997)
or statistical relationship (e.g. Bosch, 1999). We call it simultaneous
joint inversion when all data types are inverted using a single objective
function and cooperative joint inversion when the separate data inver-
sions are linked via a priori or a posteriori information. The cooperative
formulation suffers mainly from the bias that can be introduced by bad
a priori information and the simultaneous formulation suffers mainly
from the weighting of the individual data (Lines et al., 1988).

Joint inversion of geophysical data has been reported in many pa-
pers (Bosch, 1999; Doetsch et al., 2010; Gallardo and Meju, 2003;
Gallardo et al., 2005; Günther and Rücker, 2006; Haber and
Oldenburg, 1997; Kozlovskaya, 2000; Lines et al., 1988; Moorkamp
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et al., 2011; Paasche and Tronicke, 2007; Sasaki, 1989; Vozoff and
Jupp, 1975). When the relationship between physical properties is
complex, unknown, spatially variable or very weak, joint inversion
might be possible using structural constraints (Gallardo and Meju,
2003; Günther and Rücker, 2006; Haber and Oldenburg, 1997), zona-
tion (Hyndman et al., 1994; Paasche and Tronicke, 2007) or stochastic
approaches (Bosch, 1999). Note that the structural information is re-
lated to assumptions of coherent spatial variations of physical
properties.

Both resistivity and relative permittivity will be dependent on
moisture content and mineralogy (Lesmes and Friedman, 2005), al-
though the relationship between the two can be complex. Based on
petrophysical models, Linde et al. (2006) demonstrated that under
some conditions the variation of electrical conductivity and relative
permittivity is affected by variations of the same controlling rock
properties factors. Hence, the structural similarity between the two
geophysical models can be either complete or partial (only in some
places). In addition, it has been shown (Day-Lewis et al., 2005) that
these models have complementary resolution. The region of highest
resolution is localized close to boreholes for ERT, and in the central
part of the investigated area for RTT. To benefit from the aforemen-
tioned complementarities, Linde et al. (2006) apply a structural con-
straint that consists in imposing the cross product of the gradients
of the two models to be zero. The cross-gradient joint inversion ap-
proach has been originally proposed by Gallardo and Meju (2003)
to invert ERT and seismic refraction data and has been successfully
applied to other geophysical inverse problems (e.g. Gallardo et al.,
2005; Gallardo and Meju, 2007; Linde et al., 2006, 2008; Moorkamp
et al., 2011; Tryggvason and Linde, 2006). Günther and Rücker
(2006) proposed a combined separate inversion where the combination
of both models is accomplished by mutually controlling the structural
weights based on the principles of robust modeling. Lelievre (2009)
proposed a very similar approach by imposing the same structural
weight constructed from the sum of the gradients of the two models.
In the present contribution, we work in the wavelet domain, where
sharp discontinuities are encouraged. In this way, the structural infor-
mation may be easier to extract from the inverted models. In order to
achieve this goal, we use an edge detection technique based on image
gradient. Note that we assume that a model with relatively homoge-
nous zones (blocky model) can describe the subsurface.

The paper is divided into three main sections. In the first part we
provide a brief review of the theory for ERT and RTT modeling and in-
version. The regularized ERT inverse problem is presented as the mini-
mization of the Tikhonov parametric functional with a Gauss–Newton
algorithm. In the second section of the paper we give a brief descrip-
tion of the developed algorithm. Finally, in the third part, the new al-
gorithm is applied to synthetic and field data to assess its reliability
and performance.

2. Inversion method

In this section, we develop the inversion methodology and algo-
rithms for carrying out the soft thresholding iterative reconstruction
of Eso et al. (2008). Our inversion is carried out in 2-D. The resistivity
and slowness models consist of cells where the physical property is
constant within each cell.

Both ERT and RTT inverse problem are nonlinear and ill posed. The
mathematical formalism of the regularized linearized ERT and RTT in-
verse problem is a minimization of the Tikhonov parametric function-
al, consisting of a data misfit term and a regularization term which is
generally the L2-norm of the spatial changes in the model parameters
(e.g. Zhdanov, 2002). In our case, we are looking for blocky structures
that are hard to obtain when using the minimization of the L2-norm
of the spatial changes in the model parameters. An alternate method
is to use a general measure, like the L1-norm that tends to produce
models consisting of areas with piecewise constant model values.

One way would be to use robust estimators as proposed by
Claerbout and Muir (1973). The inverse problem can now be solved
using iterative reweighted least-squares techniques applied to the
minimization of the following weighted model functional

φ mð Þ ¼ jjWd d−F mð Þð Þjj22 þ βjjWcC· m−mrefð Þjj2; ð1Þ

wherem is the model parameters and d is the observed data. For ERT
inversion m and d correspond to the resistivity ρ and apparent resis-
tivity or resistance, respectively. For RRT inversion, m and d corre-
spond to slowness s and travel time t, respectively.

The first term in Eq. (1) is the misfit functional, which is a measure
of misfit between the theoretical values F(m) and the observed data
d. The second term is the model objective function or stabilizing func-
tional, which quantifies desirable features of the resulting distribution
of model parameters, and β determines the relative importance of the
data misfit and the model objective function. Wc is the weighting di-
agonal matrix that represents penalty factors for the different model
cell boundaries. The regularization matrix C is defined as the combi-
nation of the identity matrix and the matrix of the first or second de-
rivative of the parameter. It can be written as

C ¼ αxWxDx þ αzWzDz þ αsI ð2Þ

where :

Dx first or second derivative matrix in x-direction
Dz first or second derivative matrix in z-direction
Wx structural weighting matrix in x-direction
Wz structural weighting matrix in z-direction
I identity matrix
αx, αz smoothing weight factor in x- and z-direction, respectively
αs smallness or closeness weight factor.

Spatially flat or smooth models result from the application of the
first derivative or second derivative regularization matrix, respectively.
If there is no referencemodel (mref=0), the identitymatrix attempts to
force the inversion to recover the smallest model, that is model with
low model parameters values. When a reference model is incorporated
in the Eq. (2), this term ensures that the final model exhibits a small de-
parture from reference model mref . Note that to produce blocky
models, mref should be homogeneous or blocky. The reduction of the
value of αx or αz will result in models that are preferentially smooth in
z- or x-direction respectively. For example, a layered model can be
obtained using αx=1 and αz=0.01. The structural weighting matrices
(Wx,Wz) are diagonal matrices where the individual values represent a
penalty factors for the corresponding cell boundaries. They can be used
to introduce any structural constraint, such as interfaces and edges, in
the resulting distribution of model parameters. It contains small
weights at the position of edges, and weights equal to one otherwise.

The minimization of the objective functions (1) using a Gauss–
Newton algorithm results in the following iterative equations (e.g.
Farquharson and Oldenburg, 1998):

Δmi ¼ JTWT
dWd Jþ β·CTWT

cWcC
� �−1�

JTWT
dWd d−F mið Þð Þ

−β·CTWT
cWC mi−mrefð ÞÞ

ð3Þ

where J is the Jacobian matrix and JT is the transpose of matrix J.
In the case of ERT, the Jacobian matrix is computed using differen-

tial calculus and the Green's functions of the 2.5D Helmholtz equation
are obtained according to Zhou and Greenhalgh (1999). Traveltime
radar data are inverted using a ray-based approach. The curved ray
tracing routine of bh_tomo (Giroux et al., 2007) is used for the for-
ward modeling of radar travel time data and the calculation of the
Jacobian matrix. It is based on Huygens principle and on graph theory
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