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We construct a method for finding the elasticity parameters of an anisotropic homogeneous medium using
only ray velocities and corresponding polarizations. We use a linear relation between the ray velocities and
wavefront slownesses, which depends on the corresponding polarizations. Notably, this linear relation
circumvents the need to use explicitly the intrinsic relation between the wavefront slowness and ray velocity,
which – in general – is not solvable for the slownesses. We discuss sensitivity of this method to the errors in
measurements.
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1. Introduction

In this paper, we discuss a method of using ray-velocity and
polarization measurements to determine the complete set of the
density-scaled elasticity parameters that describe aHookean solid. The
problem of determining the twenty-one components of the elasticity
tensor from wave propagation has been investigated by many
researchers; among them, van Buskirk et al. (1986), Norris (1989),
and Dewangan and Grechka (2003). In all cases, the proposedmethods
relied on using polarizations and wavefront slownesses. We propose a
method for finding these components using polarizations and ray
velocities. To find the latter quantities, we consider traveltimes
measured between a single point source and point receiver, which
are directly related to the ray velocities. This method circumvents the
need to measure thewavefront slownesses, which – in a seismological
context – requires closely spaced sources or receivers.

We also demonstrate that standard seismic measurements of
polarizations and traveltimes allow us to obtain uniquely the density-
scaled elasticity parameters. In view of the forward problem described
in the next section and the inversion formulated in Section 3, we can
infer that the relation of the elasticity parameters to the polarization
and traveltime measurements is one-to-one in the context of the
theory of elastodynamics.

In Section 4, we discuss the error analysis for the proposed method
and exemplify it with a numerical example.

2. Waves and rays in Hookean solids

A Hookean solid is fully described by its mass density and elasticity
parameters, which are components of the elasticity tensor appearing
in a constitutive equation. The constitutive equation of a Hookean
solid is1

rij ¼ cijklekl; i; j; k; la 1;2;3f g;

where σ, c and ε are stress, elasticity and strain tensors, respectively.
Strain tensor is a symmetric second-rank tensor given by

eij ¼
1
2

Aui

Axj
þ Auj

Axi

� �
;

where u and x are the displacement and position vectors, respectively.
Elasticity tensor is a fourth-rank tensor that possesses the intrinsic
symmetries, cijkl=cjikl=cklij, and is positive-definite, cijklυiwjυkwlN0, for
nonzero vectors υ and w. We will consider homogeneous media,
where c and mass density, ρ, do not depend on position. In such a
case, the signal propagation is described by the following form of the
elastodynamic equations:

cijkl
q

A2uk

AxjAxl
¼ A2ui

At2
:

These equations depend on the density-scaled elasticity tensor, a:=
c/ρ, whose components are the parameters that fully describe a
medium in the context of this paper. The asymptotic solutions of these
equations lead to the Christoffel equations,

Cik pð ÞAk pð Þ ¼ Ai pð Þ ð1Þ
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where Γik(p)≔aijklpjpl,p is the slowness vector normal to thewavefront
and A is the polarization vector. Christoffel matrix Γ (p) is positive-
definite due to the positive definiteness of the elasticity tensor. The
nontrivial solution of the Christoffel equations requires that

det C pð Þ � Ið Þ ¼ 0;

which can be written as

H1 pð Þ � 1
� �

H2 pð Þ � 1
� �

H3 pð Þ � 1
� � ¼ 0

where Hα(p),α∈ {1,2,3}, are the three eigenvalues of Γ (p). Each of the
terms set to zero is the eikonal equation for one of the threewaves. For
each eikonal equation, its characteristic equations are

:
xai :¼

dxai
dt

¼ 1
2
AHa

Api
:
pai :¼

dpai
dt

¼ �1
2
AHa

Axi
;

ð2Þ

which are theHamilton equations. The solutions of these equations are
rays. In homogeneous media, the second equation reduces to ṗ=0,
which implies that the rays are straight lines. Eq. (2) defines the ray
velocity, which in the case of straight rays is given by the vector
connecting the source and the receiver divided by the traveltime; both
the source and receiver locations are known from the experimental
setup, and the traveltime is a key measurement.

3. Inversion for density-scaled elasticity parameters

In this section, we derive expressions that allow us to obtain the
density-scaled elasticity parameters using the measured traveltimes
and corresponding polarizations. The relationship between the ray
velocity, ẋ, and wavefront slowness, p, is given by Eq. (2). Using this
equation, it is, in general, impossible to express p as an explicit function
of ẋand a. In our formulation,we circumvent this problemby including
the measured polarization, A, and expressing p in terms of ẋ, a and A.

To do so, we consider the Christoffel Eq. (1),

aijklpjplAk pð Þ ¼ Ai pð Þ;

which describes polarization A as an eigenvector of the Christoffel
matrix, Γ. The Christoffel equation restricts the eigenvalues to the
slowness surfaces given by

Ha pð Þ ¼ 1:

Since Hα(p) is an eigenvalue of Γ (p) with corresponding unitary
eigenvector Aα(p), we write

Г ik pð ÞAa
k pð Þ ¼ Ha pð ÞAa

i pð Þ; ð3Þ

multiplying by Ai
α(p), we write

aijklpjplA
a
i pð ÞAa

k pð Þ ¼ Ha pð Þ; ð4Þ

since |Aα(p)|=1. Using expression (4) in Eq. (2), we write

:xia ¼ ajiklplA
a
j pð ÞAa

k pð Þ þ amjklpjpl
AAa

m pð Þ
Api

Aa
k pð Þ:

Using Eq. (3), we get

:
xia ¼ ajiklplA

a
j pð ÞAa

k pð Þ: ð5Þ

This equation can be found, among others, in the classic book of
Červený (2001, pp. 150–151). Eq. (5) can be written as
:xa ¼ C Aa pð Þð Þp:

Since ẋ and A are obtained from the measurements, Eq. (5) form a
linear system for p. The solution exists since the determinant of this

system, det (ajiklAj
αAk

α), is nonzero due to the positive definiteness of
the Christoffel matrix. The solution is

pa ¼ C�1 Aað Þ :xa: ð6Þ

This equation expresses the wavefront-slowness vector as a
function that is linear in the ray velocity and quadratic in the
polarization. The dependence on the density-scaled elasticity tensor is
contained in Γ. For a wavefront given by a fixed α, we obtain the
measurements of ẋ and A that result in p. In view of multiple arrivals
of the same wave, from now on, the index α distinguishes among
different wavefront arrivals for a single source–receiver pair, and not
among the three waves, as was the case above. Still, to obtain all
twenty-one parameters of elasticity, we need to consider the
measurements corresponding to the three waves since, for a given
wave, some of the components of a might not appear in Eq. (8), as
exemplified by transverse isotropy: the expressions for the traveltime
and the polarization of the fastest wave do not contain a1212 even
though the transversely isotropic medium is described by a1111,a1133,
a3333,a2323 and a1212, see, e.g., Slawinski (2003, pp. 229–232).

Combining expression (6) with the Christoffel Eq. (1), we obtain a
as an implicit function of ẋ and A, which we write as

C C�1 Aað Þ:xa� �
Aa ¼ Aa: ð7Þ

Writing the inverse of Γ using its minors, we can rewrite expression
(7) as

aijklMinor C Aað Þð Þjm
:
xamMinor C Aað Þð Þln

:
xanA

a
k ¼ detC Aað Þð Þ2Aa

i ; ð8Þ

where i∈{1,2,3}. For a given α and a fixed source–receiver pair, this is
an implicit system of three equations for a. These equations are
polynomials in components of a, A and ẋ; they contain only the fifth
and the sixth powers of the components of a, the thirteenth powers of
components of A, and the second powers of the components of ẋ
multiplied by the ninth powers of the components of A.

We can view each of the three Eq. (8) as an equation for a
hypersurface in the twenty-one dimensional space of density-scaled
elasticity parameters. We need to obtain twenty-one such hypersur-
faces. From each measurement, we obtain three hypersurfaces. If we
measure all three waves for a given source–receiver pair, we obtain at
least nine hypersurfaces; more than nine if there are multiple arrivals
of the same wave. In an ideal case with no measurement errors, all
hypersurfaces intersect at the point corresponding to the density-
scaled elasticity tensor that describes the medium. For the intersec-
tion of these hypersurfaces to be zero-dimensional, it is necessary that
the normals to these hypersurfaces be linearly independent.

To find the density-scaled elasticity parameters from Eq. (8) we can
use regression analysis. In the next section, we discuss the relation
between the number of measurements and the accuracy of results. A
large number of measurements also ensures that we have enough
equations to determine uniquely the density-scaled elasticity tensor.

4. Stability analysis: numerical example

In this section, we discuss the stability of the proposed method; in
particular, we discuss the sensitivity of the elasticity parameters to the
ray-velocity and polarization measurement errors. To do so, we
consider the following density-scaled elasticity tensor.2
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2 These values were used by Dewangan and Grechka (2003).
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