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The reliability of surface-based electrical resistivity tomography (ERT) for quantifying resistivities for shallow
subsurface water processes is analysed. A method comprising numerical simulations of water movement in
soil and forward–inverse modeling of ERT surveys for two synthetic data sets is presented. Resistivity
contrast, e.g. by changing water content, is shown to have large influence on the resistivity quantification.
An ensemble and clustering approach is introduced in which ensembles of 50 different inversion models for
one data set are created by randomly varying the parameters for a regularisation based inversion routine. The
ensemble members are sorted into five clusters of similar models and the mean model for each cluster is
computed. Distinguishing persisting features in the mean models from singular artifacts in individual
tomograms can improve the interpretation of inversion results.
Especially in the presence of large resistivity contrasts in high sensitivity areas, the quantification of
resistivities can be unreliable. The ensemble approach shows that this is an inherent problem present for all
models inverted with the regularisation based routine. The results also suggest that the combination of
hydrological and electrical modeling might lead to better results.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The quantification of water content by geophysical methods is an
important focus of hydrogeophysical research. Surface based electrical
resistivity tomography (ERT) is a promisingmethod, because it is non-
intrusive and can cover large surface areas quickly, while it might also
be permanently installed for automated monitoring purposes. The
development of inversion software for the processing of measured
(apparent) resistivities to models of true resistivity has made fast and
extensive surveys possible (Daily et al., 2004). Consequently, assessing
the reliability of ERT for quantifying soil water content is a currently
active research field.

ERT has successfully been used in a number of different
applications, e.g. in borehole surveys of tracer experiments (Slater
et al., 2000; Kemna et al., 2002) or in laboratory experiments (Binley
et al., 1996; Slater et al., 2002). It has also been applied in surface-
based surveys of the vadose zone (e.g. Daily and Ramirez, 1992) and of
groundwater flow after heavy rain (Suzuki and Higashi, 2001).

Because choice of measurement configuration and inversion
parameters may have significant influence on the survey results,
improving the quality of ERT surveys has been an intense research
topic. Dahlin and Zhou (2004) have compared 10 different electrode
arrays for 2D surveys and assessed their quality using synthetic data

sets. Stummer et al. (2004) have developed algorithms to calculate
optimal electrode arrays that provide as much information on the
subsurface as possible. The effects of measurement errors (Zhou and
Dahlin, 2003; Oldenborger et al., 2005) and geometry (Loke, 2000;
Hennig et al., 2005; Sjoedahl et al., 2006) and inversion parameters
(Carle et al., 1999; Rings et al., 2005) on the surveys have been studied.

Geophysical methods cannot directly determine hydrological
properties like soil water content. They must be deducted using a
general or calibrated relationship between the attribute of interest
and the property available through geophysical measurements. In the
case of ERT, the resistivities of the subsurface are related to water
content by a generic petrophysical relation; usually the equation by
Archie (1942). The resistivities, again, are not readily available from
surface-based ERT surveys, but must be obtained from the measured
apparent resistivities via inversion. The most widespread inversion
methods rely on regularised least-squares minimisation to find the
smoothest model of resistivities that gives a model response closest to
the measured apparent resistivities.

Even assuming that the petrophysical relation between resistivity
and water content is known, the resistivity models are non-unique
and have likely been affected by the inversion process. The sensitivity
of tomographic surveys plays a major role in the retrieval of
subsurface characteristics, e.g. for surface-based ERT the sensitivity
decreases with depth. Low sensitivity areas (but not only those) can
often be plagued by inversion artifacts (e.g. Rings et al., 2008). The
inversion process and the choice of inversion parameters, e.g. the
regularisation parameters, determine how well the inverted model
will reproduce the real distribution. However, some of the parameter
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choices cannot reliably be based upon observation, but must be fitted
or depend on experience.

Day-Lewis et al. (2004, 2005) refer to the loss of information
caused by the inversion process, lack of sufficient prior information
and survey geometry as ‘correlation loss’. They developed a method to
compute the correlation loss as a function of the influencing factors.
This allows an analytical integration of these factors into geostatistical
analyses of quantitative hydrological field surveys, but needs a priori
knowledge of covariance models. Singha and Gorelick (2006) suggest
a nonstationary estimation approach that uses numerical simulations
of transport and electrical current flow to deduct apparent petrophy-
sical relations. These methods modify the translation from the
inverted models by adjusting the petrophysical relation but require
either a priori knowledge or are computationally intensive.

To assess the quality of ERT-basedwater content quantification, the
complete processing chain including the inversion process, the
petrophysical relation and numerical simulations of the soil water
movement has to be evaluated. This study introduces a combined
approach using soil hydraulic simulations and ensemble building of
inverted models to estimate the uncertainty inherent in typical
applications of ERT for water content quantification.

2. Methods

To evaluate the inversion process, a forward–inverse cycle
approach is used. In numerous applications and studies, forward
modeling of synthetic data sets has been used to gain additional
insight and confidence into measurements and the inversion process
(Loke and Dahlin, 2002; Godio and Naldi, 2003; Hauck and Vonder
Muehll, 2003; Loke et al., 2003; Rings et al., 2005; Nguyen et al., 2005,
2007). Forward modeling routines are applied to synthetic data sets
obtained from simulations of soil water movement. For two case
studies, the approach is used to discuss how slight variations in the
soil structure influence the resistivity retrieval, and thereby the water
content retrieval.

The second part of the study proposes an ensemble approach
which allows an overview of the possible range of inverted models,
improves the analysis and enables general assertions about howwell a
given model can be characterised through the chosen inversion
process.

In the following, each methodological step will be shortly intro-
duced, further discussion will illustrate how these steps can be applied
to create and analyse two synthetic data sets. Fig.1 gives an overview of
all steps.

The forward–inverse cycle consists of three steps:

(1) Simulation of water movement in soil: A model with specific soil
structure is generated for numerical simulation of water
movement. The movement of a water front, caused by
infiltrating rainfall, is simulated over time. Characteristic states
of water percolation are identified (starting with a completely
dry soil) and a simplified distribution of water content for each
state is extracted.

(2) Generic resistivity model: A generic resistivity model mirroring
the soil structure from (1) is created.
• For a model representing a dry state (no water content),
resistivities are assigned based on typical values known from
laboratory measurements and/or literature.

• For states of water percolation, changes in water content can
be calculated using the water content distribution from (1).
They can be transferred into resistivity changes by applying a
petrophysical relation, e.g. the equation by Archie (1942).

• A finite-element based forward modeling routine transfers
the generic resistivity models into model responses (sets of
apparent resistivities) that correspond to the data that would

have been recorded by field surveys. Random noise is added
to simulate field measuring conditions.

(3) Resistivity inversion: The apparent resistivities are inverted
using a suitable inversion scheme. The most widespread
inversion schemes include smoothness constrained (L2-
norm) methods and robust (L1-norm) schemes which are
preferable if sharp layer boundaries are present. The forward–
inverse cycle is completed by comparing and evaluating the
generic and inverted model of resistivities.

The ensemble method comprises two steps:

(1) Ensemble generation: For each data set, an ensemble of 50
different inverted models is created by varying the inversion
parameters and/or the inversion scheme. The parameter set is
chosen randomly from a parameter space constrained to
physically meaningful parameter sets.

(2) Clustering: A clustering algorithm is used to group similar
models of the ensemble. Cluster members can be averaged to
simplify the analysis of the ensemble.

2.1. Forward–inverse cycle

The application of this methodology was governed by the available
software codes formodeling and inversion. This section discusses how
the steps were specifically realised to create and analyse two synthetic
data sets.

2.1.1. Simulation of water movement in soil
A numerical simulation of water movement was used to ensure

that realistic distributions of water content (and thus resistivity) were
used in this study.

If a continuously connected air phase is assumed, the equation of
motion for water in soil was given by Richards (1931) as:

A

At
θw + j · Kw jWm − .w g→

� �h i
ð1Þ

with volumetric water content θw, hydraulic conductivity Kw, matric
potentialΨm, density of water ϱw and gravitational acceleration g→. To
solve Eq. (1) for water content, the material properties have to be
given that connect θw, Kw andΨm. Usually, the soil water characteristic
θw(Ψm) and the conductivity Kw(θw) are parameterised.

The most widely used parameterisation for the soil water
characteristics (van Genuchten, 1980), written in terms of water
saturation S=(θ− θr)/(θs− θr) with residual water content θr,
saturated volumetric water content θs and hydraulic head hm=Ψm/
(ϱwg), is

S hmð Þ = 1 + αhmð Þm� �−1 + 1= m ð2Þ

with the scaling factor α, which is related to the air-entry value 1/α,
and the parameter ν connected to the pore size distribution. The
hydraulic conductivity is characterised by applying the parameterisa-
tions of Mualem (1976). A concise overview of the soil physics is given
e.g. by Stephens (1996).

Eq. (1) was solved numerically using the HYDRUS software
(Simunek et al., 2006). By defining time-variable precipitation and
evaporation rates as atmospheric boundary conditions, changes in the
hydraulic head hm and thus water movement are induced.

The simulations were conducted with models representing a two-
layered soil representative of a site used in previous field studies
(Rings et al., 2008). In addition to an atmospheric boundary, a seepage
boundary on the bottom allowed water to leave the domain. From the
simulations, characteristic states of a water front infiltrating the
domainwere identified. Generally, beyond the dry state, characteristic
states should be chosen at times when the water content distribution
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