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Abstract

This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a
non-linear diffusion filtering leading to a better detection of seismic faults. The non-linear diffusion approaches are based on the
definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities.
Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the
diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of
the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results
on both synthesized and real 3-D blocks show the efficiency of the proposed approach.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The acquisition and processing of reflection seismic
data result in a 3-D seismic block of acoustic impedance
interfaces. The interpretation of these data represents a
delicate task. Geological patterns are often difficult to
recognize for the expert.

This interpretation of seismic blocks mainly consists
in reflector picking (i.e. identifying and recording the

position of specific reflection events) and fault plane
locating. To be able to pick the reflectors wherever they
are located throughout the seismic volume, the inter-
preter must be able to determine the vertical displace-
ment across faults, and above all, he must discriminate
whether a discontinuity is due to noise or artefacts or is
evidence of a fault (Fig. 1).

As manual interpretation is both costly and sub-
jective, some authors have investigated the use of image
processing to develop automatic approaches (Sønneland
et al., 2000; Randen et al., 2001;Admasu and Toennies,
2004). The resulting automatic tools are useful for
structural interpretation of seismic data, but these tools
failed in tracking horizons across faults especially if the
level of noise is high.

One way to improve the efficiency of both manual
and automatic interpretation is to increase the quality of
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the 3-D seismic data by enhancing the structures to track
as preserving the faults.

Among the different methods to achieve the denois-
ing of 2D or 3-D data, a large number of approaches
using non-linear diffusion techniques have been pro-
posed in the recent years (Weickert, 1997). These
techniques are based on the use of Partial Differential
Equations (PDE).

The simplest diffusion process is the linear and
isotropic diffusion that is equivalent to a convolution
with a Gaussian kernel.

The similarity between such a convolution and the
heat equation was proved by Koenderink (1984):

BU
Bt

¼ cDU ¼ divðcjUÞ ð1Þ

In this PDE, U represents the intensity function of the
data; c is a constant which, together with the scale of
observation t, governs the amount of isotropic smooth-
ing. Setting c=1, Eq. (1) is equivalent to convolving the
image with a Gaussian kernel of width
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p
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indicates the divergence operator.
Nevertheless, the application of this linear filter over

an image produces undesirable results, such as edge and
relevant details blurring.

To overcome these drawbacks Perona and Malik
(1990) proposed the first non-linear filter by replacing
the constant c with a decreasing function of the gradient,
such as:

gðjjU jÞ ¼ 1

1þ ðjjU j=KÞ2 ð2Þ

where K is a diffusion threshold. The diffusion process
is isotropic for contrast values under the threshold K;
gradient vector norms higher than K are producing edge
enhancing. Despite the quite convincing practical
results, certain drawbacks remain unsolved: staircase
effect (Whitaker and Pizer, 1993) or pinhole effect

(Monteil and Beghdadi, 1999) are often associated with
the Perona Malik process. In addition, in the strongly
noised regions, the model may enhance the noise. Since
the introduction of this first non-linear filter, related
works attempted to improve it (Catte et al., 1992).

Weickert (1994, 1995) proposed two original models
with tensor based diffusion functions. The purpose of a
tensor based approach is to steer the smoothing process
according to the directional information contained in the
image structure. This anisotropic behaviour allows for
adjusting the smoothing effects according to the
direction.

The general model is written in PDE form, as:

BU
Bt

¼ divðDjUÞ ð3Þ

with some initial and reflecting boundary conditions.
In the Edge Enhancing Diffusion (EED) model, the

matrix D depends continuously on the gradient of a
Gaussian-smoothed version of the image (jUσ). The
aim of this Gaussian regularization is to reduce the noise
influence, having as result a robust descriptor of the
image structure. For 2D application, the diffusion tensor
D is constructed by defining the eigenvectors (Ym1) and
(Ym2) according to Ym1 jjjUa and Ym28jUa(Weickert,
1994). The corresponding eigenvalues λ1, λ2 were
chosen as:

k1 ¼ f 1; if jjUrj ¼ 0

1−exp
−1

jjUrj2
 !

; else

k2 ¼ 1

8>>><
>>>:

ð4Þ

In this manner, EED driven processes are smoothing
always along edges (λ2=1) and, in the direction of the
gradient, the diffusion is weighted by parameter λ1
according to the contrast level in that direction.

Besides the EED model which enhances edges,
Weickert proposed also a model for enhancing flow-like
patterns: the Coherence Enhancing Diffusion-CED-
(Weickert, 1999). The structure tensor introduced in
this model is a powerful tool for analyzing coherence
structures. This tensor Jρ is able to measure the gradient
changes within the neighbourhood of any investigated
point:

JqðjUrÞ ¼ Kq⁎ðjUr⊗jUrÞ ð5Þ

Each component of the resulted matrix of the tensor
product (⊗) is convolving with a Gaussian kernel (Kρ)
where ρHσ. The eigenvectors of Jρ represent the
average orientation of the gradient vector (Ym1) and the

Fig. 1. A section of 3-D seismic data.
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