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a b s t r a c t

Aspherical growth of the inner core has been suggested as a mechanism to produce seismic anisotropy
through alignment of crystal lattices. This mechanism is viable if the response to aspherical growth
occurs by slow viscous deformation. The inner core can also respond by melting and solidification at
the boundary if flow in the liquid core can redistribute latent heat over the surface. We use a numerical
geodynamo model to quantitatively assess the process of melting and solidification, and find that the
response to aspherical growth occurs primarily through phase transitions when the viscosity of the inner
core is 1021 Pa s or higher. A lower inner-core viscosity favors viscous adjustment, but the associated
stresses may be too low to produce substantial crystal alignment. Independent of the primary relaxation
mechanism, we expect a persistent and large-scale flow of the liquid core over the surface of the inner
core. The predicted flow should be large enough to affect the crystal orientation of hcp-iron alloys during
solidification, yet the absence of detectable seismic anisotropy in the top 60–80 km is suggestive. Either
the mechanism of flow-induced alignment does not apply in the core or the intrinsic anisotropy of hcp
iron at inner-core conditions is weak. Future seismological modeling using the predicted distribution
of lattice preferred orientation might establish whether this texture is detectable with current
observations.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cooling and solidification of the liquid iron core causes growth
of the inner-core at a rate of roughly 10�3 m yr�1 (e.g. Nimmo,
2007). Spatial variations in the growth rate are expected when
latent heat and chemical impurities are not removed uniformly
from the interface. One factor that contributes to aspherical growth
is due to the effects of rotation on convection in the liquid core.
Heat transport is promoted in the equatorial region (Zhang,
1992; Sumita and Olson, 2000), allowing preferential solidification
at equator. Departures from hydrostatic equilibrium drive slow
viscous flow through the interior of the inner core, which can pro-
duce alignment of the crystallographic axes of solid iron (Yoshida
et al., 1996). The combination of persistent aspherical growth
and viscous adjustment offers an attractive explanation for the
presence of seismic anisotropy in the inner core (see Deuss,
2014, for a recent review).

Deviations in the shape of the inner core also perturb tempera-
ture in the liquid core. Even small variations in temperature are
capable of driving flow because of the viscosity of liquid iron is

very low (de Wijs et al., 1998; Pozzo et al., 2013). When the flow
is vigorous enough to redistribute latent heat over the surface of
the inner core, the boundary can adjust by melting and solidifica-
tion, rather than by slow viscous flow through the interior. One
way to assess the relative importance of these two mechanisms
is to estimate the timescales for relaxation toward a hydrostatic
equilibrium. In one end-member case relaxation occurs solely by
viscous flow in the interior of the inner core. The relevant timescale
is set by the inner-core viscosity and the density jump across the
inner-core boundary. In the other end-member case relaxation
occurs through phase changes at the inner-core boundary. Here
the relaxation time depends on the size of temperature anomalies
associated with a non-hydrostatic shape and the strength of fluid
motion that results from these anomalies.

In this study we use a numerical geodynamo model to investi-
gate the fluid motion induced by thermal anomalies at the inner-
core boundary. We quantify the transport of heat and assess the
latent heat that must be removed or added to restore the boundary
to its equilibrium position. The timescale for phase change is com-
pared with the timescale for viscous relaxation (e.g. Cathles, 1975)
to assess the primary adjustment mechanism. A low inner-core
viscosity favors viscous adjustment, but the resulting stresses
may be too small to cause alignment of iron crystals. On the other
hand, a high viscosity, comparable to that proposed by Yoshida
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et al. (1996), favors adjustment by melting and solidification.
Under these circumstance we expect a substantial reduction in
preferential growth of the inner core and the associated develop-
ment of elastic anisotropy would likely be suppressed.

2. Numerical geodynamo model

We use the geodynamo model Calypso (Matsui et al., 2014) to
estimate the flow driven by a non-hydrostatic inner core. This flow
is superimposed on a background convective flow, which main-
tains an internal magnetic field. We consider an incompressible
and electrically conducting fluid in a spherical shell that rotates
at constant angular velocity X. The inner, ri, and outer, ro, radii of
the shell are chosen to have an Earth-like geometry (see Table 1).
Convection is driven by an unstable temperature difference, DT ,
between the top and bottom boundaries. Allowing for small ther-
mal anomalies on the bottom boundary modifies the convective
flow to account for the influence of a non-hydrostatic inner core
(see Section 3).

The equations for temperature, T, velocity, V, and magnetic field
B are written in non-dimensional form using L ¼ ro � ri as a char-
acteristic length scale and L2=m as the characteristic timescale,
where m is the kinematic viscosity. Temperature and velocity are
scaled by DT and m=L, respectively, while the magnetic field is
scaled by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qlXg

p
, where q is the fluid density, l is the magnetic

permeability and g is the magnetic diffusivity. The resulting gov-
erning equations are specified by four dimensionless parameters

E ¼ m
XL2 ; Pr ¼ m

j
; Pm ¼ m

g
; Ra ¼ agðroÞDTL

mX
ð1Þ

which include the Ekman number, E, the Prandtl number, Pr, the
magnetic Prandtl number, Pm and a modified Rayleigh number,
Ra. Here a is the coefficient of thermal expansion, gðrÞ is the radi-
ally dependent gravity and j is the thermal diffusivity. The man-
tle is assumed to be electrically insulating, whereas the inner
core ðr < riÞ can be either insulating or electrically conducting
with the same conductivity as the fluid. We find that the electri-
cal properties of the inner core have only a small influence on the
flow.

2.1. Thermal boundary conditions

Temperature anomalies dT on the bottom boundary are associ-
ated with radial displacements dr of the inner-core surface. This
correspondence is defined in terms of the local geotherm, TA, and
the melting temperature, TL (see Fig. 1). The boundary temperature
is constrained to remain on the melting curve when the interface is
shifted in radius. A positive dr gives a boundary temperature below
the average value of TA at the same depth. Conversely, a negative dr

corresponds to a positive temperature anomaly. A quantitative
relationship between dT and dr can be written as

dT ¼ �qgðriÞ
dTL

dP
� dTA

dP

� �
dr ð2Þ

where the pressure derivative of TL is based on Lindemann’s law
(e.g. Stacey and Davis, 2008)

dTL

dP
¼ 2ðc� 1=3ÞTL

KT
ð3Þ

and the pressure derivative of TA is given by

dTA

dP
¼ cTL

KS
ð4Þ

under the assumption that TA is an isentrope (e.g. Braginsky and
Roberts, 1995). Other quantities in (3) and (4) include the
Gruneisen parameter, c, the isothermal and adiabatic bulk mod-
uli, KT and KS, and the fluid density, q (see Table 1).

Temperature in an incompressible (Boussinesq) fluid can be
viewed as a perturbation from an isentrope. Thus DT represents
the temperature difference across the liquid core in excess of that
predicted for the isentrope. As a result, the boundary conditions on
T require

T ¼ 0 ð5Þ

at the core-mantle boundary r ¼ ro and

T ¼ DT þ dT ð6Þ

at the inner-core boundary, r ¼ ri. We adopt a constant value for DT ,
specified by the choice of Ra, and consider several values for dT. We
also assume that the temperature anomaly has a spatial depen-
dence of the form

dT ¼ dT2P2ðcos hÞ ð7Þ

where P2ðcos hÞ is the Legendre polynomial of degree 2 and h is
colatitude. A similar dependence is assumed for the radial
displacement

Table 1
List of physical properties.

Property Symbol Value Units

Bulk modulus (adiabatic) KS 1:3� 1012 Pa

Bulk modulus (isothermal) KT 1:2� 1012 Pa

Density Contrast at ri Dq 600 kg m�3

Density of Fluid (average) q 104 kg m�3

Gravity at ri gðriÞ 4.4 m s�2

Gravity at ro gðroÞ 10 m s�2

Gruneisen parameter c 1.4 –
Latent heat H 106 J kg�1

Melting temperature TL 5500 K
Radius of inner core ri 1:22� 106 m

Radius of outer core ro 3:48� 106 m

Specific heat Cp 800 J K�1 kg�1

Thermal expansion a 10�5 K�1
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Fig. 1. Schematic illustration of thermal structure near the inner-core boundary.
The intersection of the geotherm, TA , and the melting temperature, TL define the
location of the inner-core boundary. When a radial displacement, dr, shifts the
location of the boundary, the resulting melting temperature lies below the average
geotherm. Consequently, a positive dr produces a negative temperature anomaly on
the boundary. Conversely, a negative dr causes a positive temperature anomaly on
the boundary.
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