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demonstrated between these three approaches, showing that a comprehensive understanding of the
dynamics appears to be within reach in our simplified rotating convection system. The goal of this paper
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1. Introduction

Earth’s global-scale magnetic field is generated deep inside our
planet, within the iron-rich core. Flows of molten metal in the
liquid outer core, which are likely driven by thermo-chemical
buoyancy forces, continually regenerate the geomagnetic field, cre-
ating a self-sustaining planetary dynamo. Fig. 1a shows the radial
component of the geomagnetic field in 2000 A.D. plotted on the
core-mantle boundary (CMB) (Jackson, 2003). In this image, the
field is spatially-resolved up to spherical harmonic degree 13;
higher order components are masked by the magnetization of
Earth’s crust (e.g., Fig. 3 in Roberts and King, 2013). The magnetic
field is dominated by its axial dipolar component, with magnetic
flux predominantly emerging from the southern hemisphere and
returning back through the CMB in the northern hemisphere.
Most of the axial dipole’s energy is contained in four strong high
latitude flux patches, two in the northern hemisphere and two in
the southern hemisphere (e.g., Olson and Amit, 2006). These flux
patches are located in the vicinity of the tangent cylinder, the
imaginary axial cylinder shown schematically in Fig. 1d that
circumscribes the solid inner core’s equator. Magnetic flux patches
exist in the vicinity of the magnetic equator as well. These equato-
rial flux patches also contain significant magnetic energy (Jackson,
2003). Due to their low latitude placement, they contribute princi-
pally to the higher, non-dipolar axial components of the geomag-
netic field.

At present, numerical simulations form the primary tool for
studying dynamo processes on Earth and the other planets (e.g.,
Stanley and Glatzmaier, 2010). Dynamo action develops in these
simulations, primarily driven by axially-aligned columnar flows

that qualitatively resemble non-magnetic rotating convection
(e.g., Kageyama and Sato, 1997; Olson et al, 1999; Ishihara
and Kida, 2002; Aubert et al, 2008; Soderlund et al., 2012;
Sreenivasan et al., 2014). For example, Fig. 1b shows a snapshot of
the radial component of the magnetic field on the outer boundary
of a spherical shell dynamo simulation from the study of
Soderlund et al. (2012), with resolution up to spherical harmonic
degree 64. In this image, strong magnetic flux patches are evident
at higher latitudes near where the tangent cylinder intersects the
outer boundary. Further, strong flux patches are generated with a
high degree of symmetry across the geographic equator. (For
detailed descriptions of magnetic induction processes in planetary
dynamos and numerical dynamo models, we refer to a number of
recent review articles: Sreenivasan (2010), Jones (2011), Roberts
and King (2013).)

The magnetic field in Fig. 1b is generated by simultaneously
solving the evolution equations of convection-driven magnetohy-
drodynamic induction in a spherical shell with outer boundary r,
and inner boundary r; (e.g., Glatzmaier, 2013):

du+ (u-Vyu=—-Vp+ (RaPr'HO®F/r,) + V'u—E 'zZxu

+ (EPm)”'(V x B) x B, (1)
20+ (u-V)0 = Pr'v?e, )
B+ (u-V)B=(B-V)u+Pm 'V’B, (3)

subject to the solenoidal conditions V-u =0 and V - B = 0 for the
velocity and magnetic fields, u and B, respectively. The first
equation describes the conservation of momentum in a rotating

Fig. 1. (a) Radial magnetic field, B, on Earth’s core-mantle boundary (CMB), adapted from Jackson (2003). Red (blue) denotes magnetic field parallel (antiparallel) to the
radial outward normal vector. (b) Outer boundary B, from a numerical simulation by Soderlund et al. (2012); E = 10" Pr = 1;Pm = 2, Ra = 1.42 x 10° = 1.9Ra,,, and radius
ratio y = r;/r, = 0.4. The intersection of the tangent cylinder with r, is denoted by the solid black lines at cos~'(y) = +£66.4° latitude. (c) Axial vorticity, { =2 (V x u),
rendered from the same Ra = 1.9Ra.;; case. Purple (green) denotes fluid vorticity aligned parallel (antiparallel) to the system’s rotation axis. (d) Schematic of laminar axial
convection columns of width ¢,,,, with associated large-scale outer boundary magnetic flux patches shown at the ends of the cyclonic columnar structure ({ > 0, purple).
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