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a b s t r a c t

Magnetohydrodynamic (MHD) waves in a rapidly rotating planetary core can cause the magnetic secular
variation. To strengthen our understanding of the physical basis, we revisit the linear stability analyses of
thermal convection in a quasi-geostrophic rotating cylindrical annulus with an applied toroidal magnetic
field, and we extend the investigation of the oscillatory modes to a broader range of the parameters. Par-
ticular attention is paid to influence of thermal boundary conditions, either fixed temperature or heat-
flux conditions. While the non-dissipative approximation yields a slow wave propagating retrograde,
termed as a Magnetic–Coriolis (MC) Rossby wave, dissipative effects produce a variety of waves. When
magnetic diffusion is stronger than thermal diffusion, this can cause a very slow wave propagating pro-
grade. Retrograde-traveling slow waves appear when magnetic diffusion is weaker. Emergence of the
slow modes allows convection to occur at lower critical Rayleigh numbers than in the nonmagnetic case.
When magnetic diffusion is strong, the onset of the convection occurs with the prograde-propagating
slow wave, whereas when it is weak, a slow MC-Rossby mode yields the critical convection. Fixed
heat-flux boundary conditions have profound effects on the marginal curves, which monotonically
increase with the azimuthal wavenumber, and favor larger length scales at the onset of the convection,
provided there is sufficient field strength that the Coriolis force is balanced with the Lorentz force. The
effect, however, becomes less clear as magnetic diffusion is weakened and various MHD waves emerge.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The geomagnetic field has significantly changed over several
timescales. Its westward drift, with timescales of a few hundred
years, is a significant and well-known feature (e.g. Bullard et al.,
1950; Yukutake, 1962; Finlay and Jackson, 2003). Dominant east-
ward motions, on the other hand, have also been reported to appear
in longer time windows, as obtained from archaeological geomag-
netic data (e.g. Aitken et al., 1964; Dumberry and Finlay, 2007). To
account for the longitudinal geomagnetic drifts, two end-member
mechanisms have been proposed [see Holme (2007) and Finlay
et al. (2010) for reviews]. One is advection of the magnetic field lines
due to large-scale flows; in particular, those near the top of the core
(e.g. Bullard et al., 1950). The other mechanism is propagation of the
rotating MHD waves that are excited in the deep convective region
of the core (Hide, 1966; Malkus, 1967; Canet et al., 2014) or in a

stably stratified layer (Braginsky, 1984, 1999), which may poten-
tially be present beneath the core surface. Recent geodynamo simu-
lations in which there are no stably stratified layers have
successfully reproduced regional features of the westward drift
(e.g. Aubert et al., 2013). Some authors have compared the magnetic
drifts and mean zonal flow speeds, and reported that wave propaga-
tion would take part in the magnetic drifts (e.g. Kono and Roberts,
2002; Christensen and Olson, 2003). However, the properties of
these waves have not been analyzed, and they can be mixtures of
several oscillatory modes. The present study aims to clarify what
types of waves could be excited in such systems and to assess to
what extent they could play a role in the geomagnetic drifts.

Studies of magnetoconvection in rotating spheres and thick
spherical shells have shown various oscillatory modes and crucial
roles of magnetic fields [e.g. Fearn (1979a,b); see also a review
by Jones (2007)]. In the presence of a magnetic field, the Lorentz
force can balance the Coriolis force, and this diminishes the
frequency of the oscillation and even changes the direction of
propagation, from eastward to westward propagation. However,
complexities in spherical systems can make it harder to
understand the basic oscillatory modes.
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In order to gain the physical basics for classification of modes, a
quasi-geostrophic cylindrical annulus model is a useful tool, which
is a simplified model of a rotating spherical system and is capable
of reproducing the essential features of the nonmagnetic convec-
tion (Busse, 1970, 1986). A few authors have applied large-scale
external magnetic fields in order to investigate the magnetic oscil-
latory modes. While Hide (1966) considered the non-dissipative
case and found topographic Magnetic-Coriolis waves (MC-Rossby
waves) propagating westward, Busse (1976) and Soward (1979)
developed the annulus model to analyze the dissipative effects.
Busse (1976) obtained the dispersion relations of an MC-Rossby
mode modified by diffusion and of another magnetic Coriolis
mode, sometimes referred to as a magneto-Rossby wave, and
pointed out that both of the modes traveled eastward for strong
magnetic diffusion. In the limit of strong magnetic diffusion, the
analysis was extended to examine the marginal curves for the
onset of the convection and the weakly supercritical convection,
respectively, by Busse and Finocchi (1993) and Petry et al.
(1997). More recently, Finlay (2008) used approximated dispersion
relations to classify a variety of waves in a cylindrical annulus.
However, the classification was not applied to the properties of
the convection associated with the waves. Since each oscillatory
mode leads to a different thermal instability, a comparison of the
marginal curves enables us to assess the importance of each oscil-
latory mode. To complete the classification of the modes, we
explore the marginal convection, as well as the wave properties,
over a broader range of fundamental parameters. As shown below,
the most preferred mode varies with the parameters that are
assumed; typically, it is a thermal magneto-Rossby mode when
magnetic diffusion is strong, and it is an MC-Rossby mode when
magnetic diffusion is weak. These analyses may also contribute
to the better understanding of laboratory experiments and related
nonlinear simulations (Gillet et al., 2007).

Such convection can be altered by either fixed temperature or
fixed heat-flux boundary conditions, even if they are homoge-
neous. In the classic Rayleigh-Bénard convection, when neither
rotation nor a magnetic field is present, constant flux conditions
elongate convective cells and favor the longest length scale in
the system (e.g. Jakeman, 1968; Busse and Riahi, 1980; Chapman
and Proctor, 1980; Ishiwatari et al., 1994). The presence of rapid
rotation tends to decrease the length scale and competes with
the effect of heat-flux boundary conditions; the result is that the
boundary effects diminish as the rotation rate is increased (Riahi,
1982; Takehiro et al., 2002; Gibbons et al., 2007). Provided that a
magnetic field has a proper morphology, it can balance the Lorentz
and Coriolis forces and reinstate the boundary effect, i.e., prefer the
very long length scale (Hori et al., 2012). Although the previous
study showed the effect on stationary convection in a plane layer
model, investigation of oscillatory modes is of primal importance
in spherical systems, where the topography essentially produces
the convection which drifts in the azimuthal direction. Adopting
the cylindrical annulus model, we shall show that, when the Lor-
entz force is in balance with the Coriolis force, fixed heat-flux
boundary conditions favor larger length scales at the onset of the
convection, but the effect becomes less clear as magnetic diffusion
is weakened. Analysis of rotating magnetoconvection provides a
framework for interpreting the fundamental effects of the thermal
boundary conditions on convection-driven MHD dynamos (e.g.
Busse and Simitev, 2006; Sakuraba and Roberts, 2009; Hori et al.,
2010).

The model setup is described in Section 2. We begin our linear
stability analyses in Section 3 by revisiting the case with fixed
temperature boundary conditions, and in Section 4 we report the
effects of fixed heat-flux boundary conditions. In Section 5 the
results are summarized and the geophysical implications are
discussed.

2. Model

We consider a Boussinesq fluid in a cylindrical annulus with
sloping top and bottom boundaries (e.g. Busse, 1970, 1986;
Takehiro et al., 2002). In the literature, there are partial analyses
of extensions to the cases where magnetic fields are applied (e.g.
Busse, 1976; Soward, 1979; Busse and Finocchi, 1993; Yoshida
and Hamano, 1993; Finlay, 2008), and, for clarity, we adopt the
same setup. The annulus rotates with angular velocity X around
the z-axis, and has constant thickness D in the x-direction, has
almost constant height L in the z-direction, where the top and
bottom boundaries are inclined at a small angle g. The gravity g0

and applied temperature gradient b are both uniform and antipar-
allel with the x-axis. A basic magnetic field is externally applied in
the y-direction, perpendicular to both the rotational axis and
gravity: it is given as

B0 ¼ êyB0yðzÞ ð1Þ

with êy being the unit vector in the y-direction. We thus consider
small perturbations in the velocity u, the magnetic field b, and the
temperature h of the static state.

We assume that the motion is almost geostrophic and that the
z-component of the velocity is small compared to the x- and
y-components, so that the solutions can be written in a
two-dimensional form of

u ¼ r� wðx; yÞêz; b ¼ r� gðx; yÞêz; h ¼ hðx; yÞ; ð2Þ

where êz is the unit vector in the z-direction. Here �r2w and
�ðr2gÞ=l represent the z-components of the vorticity and the elec-
tric current density, respectively, with l being the magnetic perme-
ability. Averaging over z and applying the sloping boundary
conditions, we obtain the linearized equation for the vorticity as

@

@t
� mD2

� �
D2 �

4XgD
L

@

@y

� �
w ¼ ag0

@h
@y
þ hB0yi

ql
@

@y
D2g; ð3Þ

(Busse, 1976; Soward, 1979; Yoshida and Hamano, 1993), where
D2 ¼ @2=@x2 þ @2=@y2, a is the thermal expansivity, m the kinematic
viscosity, q the density, and hB0yi the mean strength of the imposed
field
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The equations for the z-averaged electric current and the tempera-
ture are, respectively, written as
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and
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where k is the magnetic diffusivity and j the thermal diffusivity.
Note that the applied field in the present model is not necessarily
uniform in the z-direction (corresponding to the axial direction in
a spherical system), but it is uniform in the y-direction (azimuthally
uniform or axisymmetric).

We choose the layer thickness D as the length scale, the viscous
diffusion time D2=m as the time scale, the mean strength of the
applied magnetic field hB0yi as the magnetic scale, and bD as the
temperature scale. The governing equations are rewritten in a
dimensionless form as
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