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a b s t r a c t

We investigate the influence of surface displacement on fluid motions induced by horizontally heteroge-
neous Joule heating in the inner core. The difference between the governing equations and those of Take-
hiro (2011) is the boundary conditions at the inner core boundary (ICB). The temperature disturbance at
the ICB coincides with the melting temperature, which varies depending on the surface displacement.
The normal component of stress equalizes with the buoyancy induced by the surface displacement.
The toroidal magnetic field and surface displacement with the horizontal structure of Y0

2 spherical har-
monics is given. The flow fields are calculated numerically for various amplitudes of surface displacement
with the expected values of the parameters of the core. Further, by considering the heat balance at the
ICB, the surface displacement amplitude is related to the turbulent velocity amplitude in the outer core,
near the ICB. The results show that when the turbulent velocity is on the order of 10�1–10�2 m/s, the flow
and stress fields are similar to those of Takehiro (2011), where the surface displacement vanishes. As the
amplitude of the turbulent velocity decreases, the amplitude of the surface displacement increases, and
counter flows from the polar to equatorial regions emerge around the ICB, while flow in the inner regions
is directed from the equatorial to polar regions, and the non-zero radial component of velocity at the ICB
remains. When the turbulent velocity is on the order of 10�4–10�5 m/s, the radial component of velocity
at the ICB vanishes, the surface counter flows become stronger than the flow in the inner region, and the
amplitude of the stress field near the ICB dominates the inner region, which might be unsuitable for
explaining the elastic anisotropy in the inner core.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The origin of the elastic anisotropy of the Earth’s inner core (e.g.
Poupinet et al., 1983; Morelli et al., 1986; Souriau, 2007) is consid-
ered to be the alignment of texture formed along the solidification
of the core (e.g. Karato, 1993; Bergman, 1997) or the alignment of
the preferred orientation of crystals by plastic deformation of fluid
motions (e.g. Jeanloz and Wenk, 1988; Yoshida et al., 1996; Karato,
1999; Buffett and Wenk, 2001). The depth dependency of the ani-
sotropy is difficult to explain by the solidification mechanism,
whereas the various factors driving solid state flow in the inner
core considered thus far do not appear to yield sufficiently strong
stresses to generate elastic anisotropy. Takehiro (2011) proposed
Joule heating of the magnetic field penetrating diffusively from
the inner core boundary (ICB) as a possible source of inner core
flows. His specific calculation in the case of a toroidal magnetic
field with the horizontal structure of Y0

2 spherical harmonics

showed that internal flows of sufficient magnitude can be induced
to explain the elastic anisotropy. The obtained solution consists of
downward flow in the equatorial region and upward flows in the
polar region, and has a non-zero radial velocity component at the
ICB, causing mass exchange between the inner and outer core. This
feature is a result of the constant normal stress boundary condition
at the ICB, and it is implicitly assumed that the phase change
occurs instantaneously at the ICB. However, the actual speed of
the phase change is finite. If the speed of the phase change is slow
enough, the ICB would be deformed, and surface displacement is
induced by the non-zero radial velocity at the ICB. This surface dis-
placement may prevent inner core flows due to the buoyancy force
originating from the density contrast between the inner and outer
core.

In this paper, we investigate the influence of surface displace-
ment on fluid motions induced by horizontally heterogeneous
Joule heating in the inner core. We examine the extent of develop-
ment of surface displacement, and modification of the flow field of
the inner core. Section 2 is a description of our model. In Section 3,
numerical results are presented for various amplitudes of surface
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displacement at the ICB. Further, the equilibrated amplitude of
surface displacement is related to the magnitude of turbulent velo-
city in the outer core just above the ICB. Section 4 summarizes the
results, and discusses whether Joule heating could be the origin of
the elastic anisotropy of the Earth’s inner core.

2. Model

We consider an MHD Boussinesq fluid in a sphere. The govern-
ing equations determining steady flow and temperature distur-
bance induced by differential Joule heating are as follows
(Takehiro, 2011):

0 ¼ � 1
q0
rpþ aTg þ mr2v ; ð1Þ

v r
dTB

dr
¼ jr2T þ

Q J

q0Cp
; ð2Þ

r � v ¼ 0: ð3Þ

v is velocity, v r is the radial component of velocity, q0 is the mean
density of the Boussinesq fluid, p is pressure, T is the temperature
disturbance, and dTB=dr is the radial temperature gradient of the
basic state. Gravity induced by the mass of the sphere itself is a
spherically symmetric distribution, g ¼ �ðg0=aÞr, where g0 is the
gravitational acceleration at the surface, a is the radius of the
sphere, and r is the position vector in the radial direction.

QJ ¼ jJj2=r ¼ jr� Bj2=lr is the Joule heating produced by the mag-
netic field B diffusing from the outer boundary (ICB) to the interior,
where l and r are the magnetic permeability and electric conduc-
tivity. Note that Eqs. (1) and (2) neglect second order nonlinear
terms, the validation of which was discussed in Takehiro (2011).

The difference between these governing equations and those of
Takehiro (2011) is the boundary conditions at the ICB, where the
effects of surface displacement emerge. The normal stress is bal-
anced at the surface with a buoyancy force proportional to the den-
sity difference of the inner and outer core. The temperature at the
surface is equal to the melting point, which is varied by the surface
displacement. The tangential stresses vanish at the surface:

rrr ¼ �pþ 2q0m
@v r

@r
¼ �Dqgh; ð4Þ

rrh ¼ q0m
1
r
@v r

@h
þ @vh

@r
� vh

r

� �
¼ 0;

rr/ ¼ q0m
@v/

@r
� v/

r
þ 1

r sin h
@v r

@/

� �
¼ 0; ð5Þ

T ¼ dTm

dr
h; at r ¼ a: ð6Þ

Here Dq is the density difference between the inner and outer core,
hðh;/Þ is the surface displacement distribution, h and / are colati-
tude and azimuth, respectively, and dTm=dr is the melting tem-
perature gradient. For simplicity, stress and temperature are
evaluated at r ¼ a, which is the boundary where the surface dis-
placement vanishes.

The non-divergent flow field is expressed with the toroidal and
poloidal potentials, w and U, defined by

v ¼ r� ðwðr; h;/ÞrÞ þ r�r� ðUðr; h;/ÞrÞ; ð7Þ

Eqs. (1) and (2) become

r2L2w ¼ 0; ð8Þ

mr2L2r2U� aðg0=aÞL2T ¼ 0; ð9Þ

L2U
r

dTB

dr
¼ jr2T þ

Q J

q0Cp
: ð10Þ

From Eq. (8), w � 0, meaning that the toroidal component is not
induced. Removing the temperature disturbance from Eqs. (9) and
(10),

L2U
r

dTB

dr
� jm

aðg0=aÞr
2r2r2U ¼

Q J

q0Cp
: ð11Þ

The boundary conditions are expressed with the velocity potentials.
By taking the horizontal divergence of Eq. (1), pressure can be
expressed with the potentials. Then, Eqs. (4)–(6) become

q0m
@

@r
r �r2Uþ 2L2U

r2

� �
¼ �Dqgh at r ¼ a; ð12Þ

@2U
@r2 �

2U
r2 þ

L2U
r2 ¼ 0 at r ¼ a; ð13Þ

ma
ag0
r2r2U ¼ dTm

dr
h; at r ¼ a: ð14Þ

Following the procedure of Takehiro (2011), the governing
equations are non-dimensionalised, considering the dominance
of advection of basic temperature. Using the temperature rising
rate jQ Jj=qCp and the difference between basic and adiabatic tem-
perature at the center, DT , the time scale is chosen to be
DTqCp=jQJj. The length scale is chosen to be the radius of the
sphere a. Then, the poloidal potential should be normalised by
ðjQ Jj=qCpÞða2=DTÞ. Eq. (11) becomes

L2U
r

dTB

dr
� 1

R
r2r2r2U� ¼ qJ ; ð15Þ

where qj ¼ QJ=jQJj is non-dimensionalised Joule heating, and R
expresses the strength of stable stratification,

R ¼ ag0DTa3

jm
: ð16Þ

The boundary conditions, Eqs. (12)–(14) are normalised as:

@

@r
r �r2Uþ 2L2U

r2

� �
¼ �Rsh; at r ¼ 1; ð17Þ

@2U
@r2 �

2U
r2 þ

L2U
r2 ¼ 0 at r ¼ 1; ð18Þ

1
R
r2r2U ¼ �Cmh; at r ¼ 1; ð19Þ

where

Cm ¼
ð�dTm=drÞa

DT
¼ ðdTm=dPÞqga

DT
; Rs ¼

qCpDT
jQ Jj

Dqga
q0m

: ð20Þ

Given the values of R;Cm, and Rs, the steady flow and temperature
disturbance fields can be obtained from these equations by setting
the distributions of basic temperature gradient dTB=dr, Joule heat-
ing qJ , and surface displacement h.

To solve the governing equations with the boundary conditions
numerically, the poloidal potential U is expanded with spherical
harmonic functions in the horizontal directions, and with the poly-
nomials developed by Matsushima and Marcus (1995) in the radial
direction. The surface displacement h is also expanded with sphe-
rical harmonics. Then, the problem becomes a system of linear
equations for each spherical harmonic component of U, since the
governing equations and boundary conditions are linear. The poly-
nomials for the radial direction are calculated to the 63rd degree.
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