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We present a new formulation of the incompressible Navier-Stokes equations with variable viscosity. By
utilizing the incompressibility constraint to remove the trace from the deviatoric stress tensor, we elim-
inate second-order cross-derivatives of the velocity field, simplifying and improving the accuracy of co-
located discretization techniques on both structured- and unstructured grids. This formulation improves
the performance of SIMPLE-type algorithms that use sequential mass-momentum iterations to enforce

incompressibility. A trace-free stress tensor also removes a typical source of net-rotation for simulations
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employing free-slip boundary conditions in spherical geometry. We implement the new scheme as a
modification of an existing Boussinesq convection code, which we benchmark against analytical solutions
of the Stokes problem in a spherical shell with both constant and radially dependent viscosity, and time-
dependent thermal convection at infinite Prandtl number with large viscosity contrasts.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Natural convection is a fundamental process across many areas
of science and engineering. The development of accurate, efficient
and robust methods for solving the coupled conservation equa-
tions of mass, momentum and energy is thus the subject of consid-
erable research.

In many applications, the fluid undergoing convection can be
considered incompressible. This leads to a simplification of the
governing equations since terms proportional to the divergence
of the velocity field vanish. For highly viscous fluids, an additional
simplification applies when the Prandtl number (the ratio of vis-
cous to thermal diffusion rates) can be taken as effectively infinite.
Under this approximation, known as Stokes or creeping flow, the
fluid has negligible inertia, which allows one to neglect the non-
linear term describing the self-advection of the velocity field. Final-
ly, if the characteristic density variations in the system under study
are small enough to be negligible except when they act as source of
buoyancy, we arrive at the incompressible, infinite Prandtl num-
ber, Boussinesq equations for natural convection (provided in Sec-
tion 2). A useful application of these equations is the modeling of
the dynamics and long-term thermal evolution of the rocky man-
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tles of terrestrial planets and the icy shells of outer solar system
bodies. Numerical simulations based on the solution of such equa-
tions are today one of the primary tools for studying these
processes.

The dynamics of creeping convection in planetary applications
depends strongly on the temperature- and stress-dependent rheol-
ogy of mantle rocks (e.g. Karato, 2010). The resulting sharp viscos-
ity gradients represent a difficult challenge for numerical models
and thus require special attention. During the last 30 years, a vari-
ety of numerical codes have been developed that focus on the issue
of dealing with large viscosity contrasts (e.g. Baumgardner, 1985;
Tackley, 1996; Choblet et al., 2007; Burstedde et al., 2008; Tackley,
2008; Zhong et al., 2008).

In this work we describe a reformulation of the Navier-Stokes
equations that we implement in a finite-volume code that refines
the previous work of Hiittig and Stemmer (2008a). By explicitly
incorporating the incompressibility constraint into the momentum
equation, we show that cross-derivatives of the velocity field can
be eliminated in the framework of a co-located discretization
scheme, i.e. where all the unknown variables of the problem are
solved for at the same grid location. This increases the robustness
of the code to large viscosity gradients, saves resources and aids
computational speed as all interpolations needed to compute
mixed derivatives of the velocity field at cell walls, which can be-
come particularly demanding in the presence of unstructured grids
(Hiittig and Stemmer, 2008b,a), become no longer necessary. A side
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benefit of our approach is that it naturally eliminates well-known
net-rotation problems that routinely arise in spherical or cylindri-
cal convection models with free-slip boundaries (Zhong, 2001;
Zhong et al., 2008; Kameyama et al., 2008; Tosi and Yuen, 2011).

The resulting code, named Gaia-v2, is benchmarked against
known results. The benchmark tests include Stokes-flow calcula-
tions, for which analytical solutions based on the matrix propaga-
tor technique are available for constant and radially varying
viscosity, as well as complex thermal convection scenarios with
temperature dependent viscosity, for which a few numerical re-
sults exist that are based on the outcomes of the finite-element
code CitComS (Zhong et al., 2008).

2. Equations and model
2.1. Governing equations

The dynamics of planetary mantles and most other natural con-
vection phenomena can be described by conservation of mass,
momentum and energy. Here, we use the Boussinesq approxima-
tion to account for density variations due to temperature alone,
which implies that we deal with an incompressible fluid. Further-
more, we make the infinite-Prandtl-number approximation
(Stokes-flow), appropriate for convection in planetary mantles. Un-
der these assumptions, the non-dimensional conservation equa-
tions are (e.g. Schubert et al., 2001):

V.u=0, (1)
V.6 +RaTe, =0, 2)
o,

5= VT —u-VT, (3)

where u is the velocity, T temperature, t time, 6 = —pl + 7 the stress
tensor, with p dynamic pressure, I identity tensor and t deviatoric
stress tensor defined as

T=u(Vu+V'u, (4)

where p is the dynamic viscosity. The body-force term RaTe, repre-
sents a buoyancy force acting in the radial direction e, due to
changes in density solely associated with temperature. The Rayleigh
number Ra is a scaling parameter.

2.2. Including mass conservation in the stress tensor

The general constitutive relation for a Newtonian fluid is
r:,u(Vu+VTu+(ﬁf§)V-ul>, (5)
where the proportionality factor (8 —2/3) accounts for the so-

called bulk viscosity g and compressibility. Setting . = g —2/3, we
can write the stress tensor components explicitly as follows:

20U+ 2V -u  p(oyu+ okv) H(O-U + Oxw)
T=| puOxw+ou) 2udyv+ivV-u p@.v+9o,w) |, (6)
Hoxw+o.u)  uyw+0,v) 2U0.w+iV-u

where u, » and w denote the Cartesian components of the velocity
vector u. For an incompressible fluid the divergence of the flow field
vanishes (Eq. (1)). However, this is only approximately true if one
uses a sequential solution method like SIMPLE or one of its modifi-
cations to enforce the incompressibility constraint (e.g. Patankar,
1980). These methods decouple pressure and velocity and require
an iterative solution of the system until mass and momentum con-
servation are satisfactorily achieved. The deviatoric stress tensor (6)
is expected to be trace-free from the mass conservation constraint
(1). Nevertheless, iterative solution schemes leave a non-zero trace

from a residual divergence term. While this trace can be significant
during the first iterations, it gradually vanishes as convergence is
reached.

Due to the incompressibility of the fluid, 4 in Eq. (6) can take
any value. This is important because choosing 2= —u not only
explicitly removes the trace from the deviatoric stress tensor but
also eliminates second-order cross-derivatives in the momentum
equation, thereby facilitating the discretization of Eq. (2). The
resulting stress tensor reads

H(Oxtt = Dy v — O, W) H(Oyu+0xv) WO+ O W)
T= wWoxw+ou)  poyv—ou—0o,w) 0, v+0o,w)
U(Oxw +0,1) WU(OyW+0,v) W(O,W—0Oxu— 0y )

(7)

Taking the divergence of the tensor (7), we obtain, e.g. for the x-
component:

(V-1), = Oxl(OxU — Oy v — O, W) + U(Oxxll — Dy ¥ — OxW)

+ Oy 1(OyU + Ox V) + U(OyyU + Oxy V) + Oz 14(O;U

+ OxW) + (072U + Oy W). (8)
Collecting ¢ and defining E = V(In u), we have:

(V-7), = W(Ex(Oxu — Oy v — O;W) + Oxll — By ¥ — O W
+Ey (Oyu + 0x0)+0yyUl 4 Oxy U+ E; (O, u + O W)
+ Ol + O W), 9)

where the subscripts of the vector E indicate its Cartesian compo-
nents. Simplifying eliminates second-order cross-derivatives and
we obtain:

E, 80 — Edyv + E,dsw — Exd,w + E - Vu + V*u

V.t =u| Edyu — E,du + Ed,w —E,0,w + E-Vov+ Vv

Eyd,u — E;0xu + Ey0,v — E,0,v + E - Vw + V?w
:u(E-(Vu+VTu—V-uI)+V2u>. (10)

Any Laplace operator with variable coefficients can be decom-
posed into an advection-like part and a pure Laplacian. In Eq.
(10), the gradient of the logarithm of viscosity E can be interpreted
as a velocity-like field that advects the actual velocity components
to counteract the generic smoothing of the Laplacian. If this gradi-
ent is large, the system becomes dominated by the advection-like
term and numerical methods suitable for generic advection prob-
lems (i.e. for hyperbolic partial differential equations) may become
more appropriate.

An immediate advantage of the above formulation is the absence
of second-order cross-derivative terms. This makes the implementa-
tion of the momentum equation with variable viscosity easier in any
co-located finite-volume or -difference scheme, particularly on
unstructured grids. Clearly, in the case of constant viscosity, the
divergence of the stress tensor (10) reduces to the usual vector-
Laplacian of the velocity field 1V?u, so the advantages of our formu-
lation only arise in situations with spatially varying viscosity.

3. Benchmark simulations

For the series of benchmark simulations that will be presented
in this section we have solved, in a co-located finite-volume frame-
work, the conservation equations (1) and (2) using the SIMPLE
method (Patankar, 1980) by discretizing explicitly the term (10).
Additionally, in time-dependent thermal convection runs, we
solved Eq. (3) employing a fully-implicit three levels scheme with
second-order accuracy in space and time (Harder and Hansen,
2005; Hiittig and Stemmer, 2008a). Both linear systems arising
from the discretization of the momentum and energy equations
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