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a b s t r a c t

The viscosity of the Earth’s mantle is strongly variable. In particular, the dependence on temperature
leads to viscosity variations of several orders of magnitude. This is crucial for the modelling of stiff surface
plates in mantle convection codes but is a limiting factor in numerical experiments. Therefore, various
approximations to reduce the strong vertical gradients have been applied. Here, we present an approxi-
mation that also neglects lateral variations. This layered temperature dependence has the advantage that
it can easily be implemented into mantle convection codes that cannot handle lateral variations in the
viscosity. Furthermore we find that typically convergence rates are improved compared to models
using the full temperature dependence so that computation time can be reduced in models that would
allow for the full temperature dependence. In this study we compare the results of the horizontally-aver-
aged and the full temperature-dependent viscosity convection for a wide range of parameters comprising
all three flow regimes known in thermoviscous convection and for models featuring an additional stress-
dependent viscosity to allow for plate motion. Additionally, we discuss why the approximation shows
minor differences to the full temperature dependence in some cases and present improvements. In gen-
eral, we observe that the layered temperature-dependent viscosity convection is a suitable approxima-
tion to the full temperature depencence. Fast models of one-plate planets can be run when only using
the layered temperature-dependent viscosity and plate-like motion results with an additional stress
dependence.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mantle viscosity strongly depends on stress, pressure and par-
ticular temperature (Kirby, 1983; Karato and Wu, 1993). The effect
of a temperature-dependent viscosity on the style of convection
has been shown in a number of laboratory, numerical and theoret-
ical studies (e.g. Booker, 1976; Nataf and Richter, 1982; Stengel
et al., 1982; Christensen, 1984; Morris and Canright, 1984; Davaille
and Jaupart, 1993; Tackley, 1993; Solomatov, 1995; Moresi and
Solomatov, 1995, and many more). The general observation in
thermoviscous convection is that the surface more strongly decou-
ples from the interior as the strength of the temperature depen-
dence increases, i.e. with a stronger viscosity contrast between
the top and bottom boundary. This is a first step towards modelling
plates as stiff entities atop the convecting mantle.

Three flow regimes have been identified for different viscosity
contrasts. Solomatov (1995) gives the approximate values of the
transitions between the flow regimes. For a small viscosity contrast

(<100) the surface behaves fluid-like such as the interior. Therefore
the small-viscosity contrast regime resembles isoviscous convec-
tion. Increasing the viscosity contrast beyond 100 reduces the sur-
face velocity and the surface becomes sluggish compared to the
interior. Finally, for viscosity contrasts larger than about 3000
the surface becomes immobile. Therefore this regime is commonly
referred to as stagnant-lid convection.

Hansen and Yuen (1993) have additionally found that there is a
Rayleigh number-dependent boundary at intermediate viscosity
contrasts. At high Rayleigh numbers the surface is again mobilised
and convection resembles isoviscous convection as in the small-
viscosity contrast regime.

The planform of convection and consequently the depth profiles
resulting in each regime differ (Trompert and Hansen, 1998;
Schubert et al., 2001). In the small-viscosity contrast regime the
horizontal wavelength of the flow is comparable to the fluid layer
depth. The flow structure shows that the up- and downflows are in
balance and depth profiles are symmetric. With an increasing vis-
cosity contrast a stronger imbalance between the up- and down-
flows occurs which is also reflected in unsymmetric depth
profiles. The planform of convection changes to larger horizontal
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scales in the sluggish-lid regime until the wavelength becomes
very small for the stagnant-lid regime (Schubert et al., 2001).

The temperature profiles in the stagnant-lid regime show that
across the cold thermal boundary layer almost the entire temper-
ature difference DT occurs and that the heat transfer here is largely
conductive (Solomatov, 1995). Beneath the stagnant lid, convec-
tion is almost isoviscous with only a small rheological temperature
difference driving the convection and little cold material sinking
into the interior (e.g. Morris and Canright, 1984). As a consequence,
the efficiency for heat transfer over the surface is reduced in the
stagnant-lid regime and the nondimensional interior temperature
is higher than the 0.5 observed in isoviscous convection. Scalings
of the heat flow vs. the Rayleigh number show that the exponent
in the power-law relation decreases with an increasing viscosity
contrast (e.g. Christensen, 1984) until it reaches an asymptotic va-
lue in the stagnant-lid regime (Moresi and Solomatov, 1995).

The Rayleigh number in thermoviscous convection is not un-
ique but varies with the viscosity which is given by an Arrhenius
law (e.g. Karato and Wu, 1993). In numerical studies an approxi-
mation in the form of a linearised exponential function
(Frank-Kamenetskii rheology) is commonly applied to limit the
strong vertical viscosity gradients occurring in the top boundary
layer (e.g. Christensen, 1984; Solomatov, 1995; King, 2009; Stein
and Hansen, 2013). Similarly, strong lateral viscosity variations
can occur between the cold, highly viscous downflows and the
warm, low viscous ambient material.

Therefore, we here present model calculations featuring a lay-
ered temperature-dependent viscosity convection, i.e. we use the
radial temperature profile to compute the viscosity. Our work is
a follow-up study of Tackley (1996) and Sunder-Plassmann and
Christensen (2000). Looking at the flow pattern of two 3D simula-
tions, Tackley (1996) finds no qualitative differences in simulations
featuring the full temperature dependence and those in which the
viscosity is averaged horizontally. A more quantitative 2D study of
layered temperature-dependent viscosity convection is provided
by Sunder-Plassmann and Christensen (2000). These authors also
find that neglecting lateral variations has very little effect. How-
ever, their simulations using free-slip boundary conditions have
fairly low viscosity contrasts which do not allow for the formation
of a stagnant lid. The statement that the layered temperature-
dependent viscosity is a good approximation in the stagnant-lid re-
gime relies on simulations with a likewise low viscosity contrast
but no-slip conditions. In the present work we extend the 2D
and 3D analysis of layered temperature-dependent viscosity con-
vection with free-slip boundary conditions to higher viscosity con-
trasts mimicking stagnant-lid convection. The regime transitions
we obtain are in good agreement with the results obtained for
the full temperature dependence as are the scaling laws in all three
flow regimes. Adding a deformation mechanism to the system
shows that also plate behaviour can be modelled when using the
approximation. We discuss limitations and provide applications
of the approximation to currently used models.

2. Models

Assuming incompressibility and the Boussinesq approximation
the governing nondimensional equations for mantle convection
are:

~r �~u ¼ 0 ð1Þ

@T
@t
þ~u � ~rT � ~r2T ¼ 0 ð2Þ

�~rpþ ~r � g ~r~uþ ð~r~uÞT
� �h i

þ RaT~ez ¼ 0: ð3Þ

Here, ~u, T, p, g and ~ez are the velocity vector, the temperature, the
pressure, the viscosity and the unit vector in the vertical direction
z, respectively. The Rayleigh number is given as:

Ra ¼ aqgDTd3

jg
ð4Þ

where a, q, g, DT , d and j are the thermal expansion coefficient, the
density, the gravitational acceleration, the temperature difference
across the fluid layer, the thickness of the fluid layer and the ther-
mal diffusivity, respectively. In thermoviscous convection the Ray-
leigh number is non-unique due to the variable viscosity. In this
study the Rayleigh number is evaluated using the viscosity at the
bottom, which is a-priori known.

The viscosity of mantle material is assumed to follow an Arrhe-
nius-typed law that is commonly used in the linearized version to
reduce the strong vertical gradients (cf. Schubert et al., 2001; Stein
and Hansen, 2013):

gT ¼ exp � lnðDgÞTð Þ ð5Þ

Here, Dg ¼ g0=g1 is the viscosity ratio between the top and the bot-
tom boundary. In the layered temperature-dependent viscosity con-
vection only the horizontally-averaged temperature < T > is
applied to further eliminate the horizontal viscosity variations:

g<T> ¼ exp � lnðDgÞ < T >ð Þ: ð6Þ

< T > is computed as the arithmetic mean for most of this study.
Only in Section 3.3 we do also apply the midrange method.

We use two numerical models. In the first model, MC3D, the
temperature equation is solved using an explicit finite difference
method and for the velocities the spectral formulation is used (Ga-
ble et al., 1991). The code cannot easily handle lateral viscosity
variations because in the spectral formulation variables are formu-
lated as a sum of global basis functions (e.g. Fourier expansion in
Cartesian models with periodic boundary conditions or Cheby-
shev/Legendre polynomials in the case of non-periodic boundaries
and spherical harmonics in spherical calculations) instead of local
functions like in the spatial methods. For lateral viscosity varia-
tions the momentum equation is non-linear so that the modes
do not decouple and cannot be solved independently as in isovis-
cous convection. An easy way to preserve the efficiency of the
spectral method is to approximate the temperature dependence
by using a temperature profile.

For the comparison of the full temperature dependence and the
approximation we use a model that can handle both viscosities.
The second code uses an implicit, finite volume multigrid method
to solve the equations of mantle convection (cf. Trompert and
Hansen, 1996). Horizontal boundary conditions for all simulations
are set to T = 0 (top) and T = 1 (bottom) and a vanishing heat flux
for the temperature is assumed at the vertical boundaries. For
the velocities all boundaries are free-slip. Square boxes with a res-
olution of 642 (643) control volumes are used. Additionally a grid
refinement is applied to better resolve the strong gradients appear-
ing in the thermal boundary layers.

3. Numerical experiments

Using the layered temperature-dependent viscosity function
(Eq. 6) in the spectral code we are able to get a rigid surface with-
out prescribing a certain viscosity profile as was done in previous
studies employing MC3D (e.g. Stein and Lowman, 2010; Lowman
et al., 2011). Fig. 1 shows that with an increasing viscosity contrast
the different flow regimes as described by Solomatov (1995) are
obtained. The surface Nusselt number decreases with increasing
viscosity contrast (Fig. 1a) as the top layer grows thicker and be-
comes highly viscous compared to the convecting interior
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